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under these constraints raises a number of issues of interest to the artificial
intelligence community such as:

- knowledge representation semantics for organization modeling,
- extending knowledge representation techniques to include the variety of
- constraints found in the scheduling domain,

-~ integrating constraints into the search process--in particular, determining
how to use constraints to bound the generation and focus the selection of
alternative solutions,

~ relaxing constraints when conflict occurs, and

~ analyzing the interaction between constraints to diagnose poor solutions.
In this thesis, we present a system called 1SIS. 1ISIS uses a constraint-directed
search paradigm to solve the scheduling problem. ISIS provides:

- a knowledge representation language (SRL) for modeling organizations :.:d
their constraints,

- hierarchical, constraint—directed'scheduling of orders, which includes:
constraint-directed bounding of the solution space,
context-sensitive selection of constraints, and
"weighted interpretation of constraints.
- analytic and generative constraint relaxation, and
- techniques for the diagnosis of poor schedules.
In addition, the ISIS system has been designed to provide complete facilities
for practical use in the factory. These facilities include: interfaces for
updating factory status, incremental scheduling in response to changes in the
factory, interfaces for altering the factory model, and interactive, scheduling

with flagging of poorly satisfied constraints. Versions of the ISIS program
have been tested on a model of a real factory using simulated orders.
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\4 Abstract

This thesis investigates the problem of constraint-directed reasoning in the job-shop
: scheduling domain. The job-shop scheduling problem is defined as: selecting a sequence of
) operations whose execution results in the completion of an order, and assigning times (i.e.,

' ; start and end times) and resources to each operation. The number of possible schedules
grows exponentially with the number of orders, alternative production plans, substitutable
: resources, and possible times to assign resources and perform operations. The acceptability

of a particular schedule depends not only on the availability of alternatives, but on other
knowledge such as organizational goals, physical limitations of resources. causal restrictions
amongst resources and operations, availability of resources, and preferences amongst
alternatives. By viewing the scheduling problem from a constraint-directed search
perspective, much of this knowledge can be viewed as constraints on the schedule
generation and selection process. The problem of scheduling orders in a job-shop under
these constraints raises a n%be( of issues of interest to the artificial intelligence community
such as .

/ . knowledge representation semantics for organization modeling,

| eextending knowledge representation techniques to include the variety of
. / constraints found in the scheduling domain,
e integrating constraints into the search process -- in particular, determining how to
use constraints to bound the generation and focus the selection of alternative
solutions,

-

e relaxing constraints when conflict occurs, and

# analyzing the interaction between constraints to diagnose poor solutions.

'

In this thesis, we present a system called ISIS. ISIS uses a constraint-directed search
paradlgm to solve the schedulmg problem ISIS provides:

ea knowledge representation Ianguage (SRL) for modeling organizations and their
coEStramts;D
¢

o hierarchical, constraint-directed scheduling of orders, which includes:

A TR IR eI sk - - s

o constraint-directed bounding of the solution space)' |

ojcontext sensitive selectlon of constramts, and

N
° weughted interpretation of constraints.

(e )

¥
; e analytic and generative constraint relaxation)- and

————————

e techniques for the dlagnosw of poor schedules

In addition, the ISIS system has been designed to provide complete facilities for practical use
in the factory. These facilities include: interfaces for updating factory status, incremental




scheduling in response to changes in the factory, interfaces for aitering the factory model,
and interactive, scheduling with flagging of poorly satisfied constraints. Versions of the SIS
program have been tested on a model of a real factory using simylated orders.
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Chapter 1
Introduction

This thesis investigates the problem cf constraint-directed reasoning in the job-shop
scheduling domain. The job-shop scheduling problem is defined as:

e selecting a set of operations whose execution resuits in the completion of an
order, and

e assigning times (i.e., start and end times) and resources to each operation.

The number of possible schedules grows exponentially with the number of orders, alternative
production plans, substitutable resources, and possible times to assign resources and
perform operations. The acceptability of a particular schedule depends not only on the
availability of alternatives, but on other knowledge such as:

e Organization Goals: due date requirements, work-in-process time
requirements, cost restrictions, and machine utilization goals,

e Physical Limitations: machine capabilities, product size and quality limitations,

e Causal Restrictions: precedence of gperations, and resource requirements to
pertorm an operation,

e Availability: availability of resources (e.g., tools, fixtures, NC programs, and
operators) to perform an operation, and

e Preferences: qualitative preferences for operations, machines, and other
resources.

By viewing the scheduling problem from a constraint-directed search perspective, much of
this knowledge can be viewed as constraints on the schedule generation and selection
process. The probiem of scheduling orders in a job-shop under these constraints raises a
number of issues of interest to the artificial intelligence community such as:

¢ knowledge representation semantics for organization modeling,

e extending knowledge representation techniques to include the variety of
constraints found in the scheduling domain,

o integrating constraints into the search process -- in particular, determining how to
use constraints to bound the generation and focus the selection of alternative
solutions,

INTRODUCTION
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o relaxing constraints when conflict occurs, and

e analyzing the interaction between constraints to diagnose poor sclutions.

In this thesis, we present a system called iSIS. ISIS uses a constraint-directed search
paradigm to solve the scheduling problem. ISIS provides:

& a knowledge representation language (SRL) for modeling organizations and their
constraints,

o hierarchical, constraint-directed scheduling of orders, which includes:

o constraint-directed bounding of the solution space,
o context-sensitive selection of constraints, and
o weighted interpretation of constraints.

¢ analytic and generative constraint relaxation, and

e techniques for the diagnosis of pocr schedules.

In addition, the ISIS system has been designed to provide complete facitities for the practical
use in the factory. These facilities include: interfaces for updating factory status, incremental
scheduling in response to changes in the factory, interfaces for aitering the factory model,
and interactive scheduling with flagging of poorly satisfied constraints.

Versions of the ISIS program have been tested on 8 madel of a real factory, using simulated
orders. Experiments were conducted comparing: beam and hierarchical search, forward and
backwards search, optimistic and pessimistic constraints, and eager and wait-and-see
resource reservation selection.

The objective of this dissertation, from a job-shop scheduling perspective, is to focus on the
representation and utilization of all relevant constraints in the scheduling process, to design
and construct an interactive system for the modeling and scheduling of general job-shops,
and tc bridge the gap between scheduling systems which simply guide the human scheduler,
to a scheduling system that can control operations in realtime.

The rast of this chapter provides a detailed description of the scheduling problem, followed
by a brief discussion of the issues and a summary of the ISIS system.

1.1. The Scheduling Problem

The goal of this section is to illustrate the variety of different constraints found in the
scheduling problem. Many of which have not been covered by previous techniques. This
inability to model all the constraints of the problem has often led to sysiems of limited ability,
feaving much of the work to the human scheduler. In this section we will illustrate the nature
of the scheduling problem and the constraints which affect it. A categorization of constraints
is provided,

INTRODUCTION
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The job-shop scheduling problem involves selecting a sequence of operations (i.e., a
process routing) whose execution results in the completion of an order, and assigning times
(i.e.. start and end times) and resources to each operation. Historically, the scheduling
problem is divided into two separate steps. Process routing selection is typically the product
of a planning process, and the assignment of times and resources is typicallv the product of
scheduling. Actually, the distinction between planning and scheduling is fuzzy. The choice of
routing cannot be made without generating the accompanying schedule. The admissibility of
a process routing, is determined by the feasibility of each selected and scheduied operation.
An operation is feasible when its resource requirements are satisfied during the scheduled
time of the operation. Resource requirements for an operation are determined by the
operation and, in turn, by the machines that may perform the operation.

This proolem has been described as NP-hard. The sequencing of 10 orders through §
operations has (10!)5 or more than 10%° possible schedules (without gaps or alternative
routings). Adding more orders, operations, and resources to the selection process muitiplies
the complexity of the scheduling problem. The complexity of the job-shop scheduling
problem can be illustrated by examining the problems of a real plant.

A Westinghouse Electric Corporation Turbine Component Plant (WTCP) was selected as a
test case. The primary product of the plant is steam turbine blades. A turbine blade is a
complex three dimensional object produced by a sequence of forging, miiling and grinding
operations to tolerances of a thousandth of an inch.- Thousands of different blades are
produced in the plant; much of them as replacements in turbines currently in service.

The plant continuously receives orders for one to a thousand blades at a time. Orders fall
into at least six categories:

1. Forced outages (FO): Orders to replace blades which malfunctioned during
operation. Itis important to ship these orders as soon as possible.

2. Critical replacement (CR) and Ship Direct (SD): Orders to replace blades during
scheduled maintenance. Advance warning is provided, but the blades must
arrive on time.

3. Service and shop orders (SO, SH): Orders for new turbines. Lead times of up to
three years may be known.

4. Stock orders (ST): Order for biades to be placed in stock for future needs.
The part of the plant considered by ISIS has 100 {0 200 orders in process at any time.
Parts are produced according to a process routing or fineup. A routing specifies a
sequence of operations on the part. An operation is an activity which defines:

o the resources required such as tools, materials, fixtures, and machines,
e machine setup and run times, and
e labor requirements.

INTRODUCTION
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in the plant, each part number has one or more process routings containing ten or more
operations. Process routings may be as simple as substituting a different machine, or as
complex as changing the manufacturing process. Further more, the resources needed for an
operation may also be needed by other operations in the shop.

During our discussions, we found that orders are not scheduled in a uniform manner. Each
scheduling choice entails side effects whose importance varies by order. One factor that
continuously appears is the reliance of the scheduier on information other than due dates,
process routings, and machine availability. The types and sources of this information were
found by examining the dacuments issued by the scheduler. A schedule is distributed to
persons in each depariment in the plant. Each person on the distribution list can provide
information which may aiter the existing schedule. In support of this observation, we found
that the scheduler is spending 10% to 20% of his time scheduling, and 80%-90% of his time
communicating with other employees to determine what additional "constraints” may affect
an order’'s schedule. These constraints include operation precedence, operation alternatives,
operation preferences, machine alternatives and preferences, tool avaifability, fixture
availability, NC program availability, order sequencing, setup time reduction, machine
breakdowns, machine capabilities, work-in-process time, due dates, start dates, shop stability,
cost, quality, and personnel capabilities/availability.

From this analysis, we may conclude that the object of scheduling is not only meeting due
dates, but satisfying the many constraints found in various parts of the p!ant. Scheduling is
not a distinct function, separate from the rest of the plant, but is highly connected to and
dependent upon decisions being made elsewhere in the plant. The added complexity
imposed by these constraints leads schedulers to produce inefficient schedules. Indicators
such as high work-in-process, tardiness, and low machine utilization support this conclusion’.
Hence, any solution to the job-shop scheduling problem must identify the set of scheduling
constraints, and their alfect on the scheduling process. In the following, we examine the

variety of constraints uncovered in the WTCP plant.

1.1.1. Constraint Categories

The first category of constraint encountered in the factory is called an Organizational Goal.
Part of the organization planning process is the gesneration of measures of how the
organization is to perform. These measures act as constrainis on one or more organization
variables. An organization goal constraint can be viewed as an expected value of some
organization variable. For example:

Due Dates: A major concern of a factory is the meeting of due dates. The lateness of an
order affects customer satisfaction.

1It is untair to measure a scheduler's prefarmance based on the above measures alone. Our analysis has shown
that scheduling ia a complex constraint satisfaction problem, where the above indicators iifustrate onfy a subset of
constraints that the scheduler must consider. Schedulers are expert in acquiring ang "juggling” the satisfaction of
constraints.
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Work-In-Process: Work-in-process (WIP) inventory levels are another concern. WIP
: inventory represents a substantial investment in raw matenals and added
value. These costs are not recoverabie untii delivery. Hence, reducing
WIP time is desirable.

Resource Levels: Another concern is maintaining adequate levels of resources necessary
to sustain operations. Resources include personnel. raw materials, tools,
etc. But each resource may have constraints, for example, labor size must
be smoothed over a month's interval, or raw materials inventory may have
to be limited to a two day supply..

Costs: Cost reduction can be another important goal. Costs may include material costs,
wages, and lost opportunity. Reducing costs may help achieve other
goals such as stabilization of the work force.

Production Levels: Advance planning also sets production goals for each cost center in the
plant. It serves two functions: it designates the primary facilities of the
plant by specifying higher production goals, and also specifies a
preliminary budget by predicting how much the plant will produce.

Shop Stability: Shop stability is a function of the number of revisions to a schedule and the
amount of preparation disturbed by these revisions. [t is an artifact of the
time taken to communicate change in the plant and the preparation time.

On2 can view all organizational goal constraints as being approximations of a simple profit
constraint. The goal of an organization is to maximize profits. Scheduling decisions are then
made on the basis of current and future costs incurred. For example, not meeting a due date
may result in the loss of a customer and, inturn, further profits. The longer the work in
process time, the greater the carrying charge for raw materials and value added operations.
Maintaining a designated production level may spread the ccst of the capital equipment in a
uniform manner. In practice, most of these costs cannot be accuratety determined, but must
be approximated.

A second category of constraint is physical. Physical constraints may specify
characteristics which limit functionality. For example, a milling machine may be limited in the
size of turbine blade it can work on due to the length of its workbed. A driil may have a graph
which defines how long the drill can run at a particular speed in a particuiar material.

A third category of constraint is causal. It defines what conditions must be satisfied before
initiating an operation. Examples of causal constraints include:

. Precedence: A process routing is a sequence of operations. -A precedence constraint on an
operation states that another operation must take place before (or after) it.
There may be further modifiers on the constraint in terms of minimum or
f maximum time between operations, product temperature to be
1 maintained, etc.

'f Resource Requirements: Another causal constraint is the specification of resources to be
i
3
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present before or during the execution of a process. For example, a
milling operation requires the presence of certain tools, an operator,
fixtures, etc.

A fourth category of constraint is preference. A preference constraint can also be viewed as
an abstraction of other types of constraints. Consider a preference for a machine. |t
expresses a floor supervisor's desire that one machine be used instead of another. The
reason for the preference may be due to cost or quality, but sufficient information does not
exist to derive actual costs. In addition, machine preferences, operation preferences, and
queue position preferences are examples of this type of constraint.

A fifth category of constraint is concerned with the availability of a resource. During the
production of a schedule, as each resource is assigned to an operation, it has attached to it a
constraint that defines it unavailability for other uses during that time period.

The following lists the variety of constraints and their categories, found in the scheduling
domain:
Constraint Org. Goal Physical Causal Pref. Avail.
Operation alternatives X
Operation Preferences X
Machine alternatives x
Machine Preferences X
Machine physical constraints X
Set-up times X X
Cueve ordering preferences x
Queue stability X
Due date X
Work-in-process X
Tool requirement X
Material requirement
Personnel requirement X
Resource reservations x
Shifts
Down time X
Productivity achieved
Cost
Productivity goals
Quality '
inter-operation transfer times x

x

x
x

x X X X

A review of commercial scheduling systems found that most provide simple capacity
analysis with an emphasis on meeting due dates. This was found to be unacceptable for
WTCP. These systems are also batch oriented, meant to be run weekly or monthly, and do
not provide reaitime control. Nor do they provide full constraint representation and utilization
facilities. On the other hand, Management Science research focuses on optimal results for
artificial problems, or dispatch rules for meeting due dates or makespan (i.e., facility
utilization) which also have been found to be unsatisfactory for the real life job-shop
scheduling problem.

INTRODUCTION




MARK S. FOX PAGE7

WTCP uses a commercial scheduling system. Having recognized its limitations and those of
manual scheduling, they continue to pursue the identification and acquisition of software to
support the scheduling process.

1.2. Constraint-Directed Search: Issues and Objectives

Job-shop scheduling provides a rich environment for investigating the theory of constraint-
directed search. The scheduling problem can be characterized as having a large search
space which may be reduced through the examination and utilization of the relevant
constraints. It is the purpose of this section to present the constraint-directed search issues,
and the objectives of ISIS as related to them.

At present, there do not exist general models for the representation of constraints. Hence,
the first objective of this research is to identify and represent the variety of constraints, and
knowledge about them. As an example of constraint knowledge, consider a due date. One
method of representing a due date would be by date alone. The implication being that the job
would be shipped on that date. In reality, not all due dates can be met. Information in
addition to the due date is required if a scheduling system is to construct a satisfactory
schedule. For example:

e what aiternative dates are satisfactory if the original cannot be met,
o what the preferences exist for these alternative dates,
o who specified the due date, when, and why,

' isotshtg satisfaction of the due date more important than other constraints such as
c s

¢ does the satisfaction of the due date constraint positively or negatively affect the
satisfaction of other constraints, ’

e under what circumstances should the due date constraint be considered, and
] gethere %re two or more due date constraints specified for an order, which should

The constraint representation problem is concerned with the representation of this
knowledge for effective utilization during search.

One of the first issues to be faced in the representation of constraints is conflict. Consider
cost and due-date constraints, the former may require reduction of costs while the latter may
require shipping the order in a short period of time. To accomplish the latter may require
using faster, more expensive machines, hence conflicting with the former. If the conflict
cannot be solved, one or both constraints must "give ground” or be relaxed. This is implicitly
accomplished in mathematical programming and decision theory by means of utility functions
and the specifications of reiaxation through bounds on a variable's value. In Al, bounds on a
variable are usually specified by predicates (Stefik, 1981a; Engleman et al., 1980) or choice
sels (Steete, 1980; Waltz, 1975). In ISIS, our objective is to extend the general representation
of knowledge to include the specification of constraints and their refaxations.
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A second issue is constraint importance. Not all constraints are of equal importance. A due
date constraint for a high priority order may be more important than an operation preference
constraint. Any constraint-directed search system, before it attempts to choose a constraint
to relax, must determine which is the least important. The importance of constraints may also
differ from order to order. In one order, the due date may be important, and in another, cost
may be important. A reasoning system should be able to perform these two types of
differentiation. Our objective in ISIS is to extend the representation of constraints to include
the specification of relative importance.

A third issue is the understanding of how constraints interact. Conflicting constraints may
negatively affect each other. For example, removing a machine's second shift may decrease
costs but cause an order to miss its due date. Knowledge of these interactions before
scheduling may help in ruling out poor choices. How to use the knowledge of interactions
between constraints effectively is not well understood. Our objective in ISIS is to include in
the representation of constraints, the existence of interactions with other constraints, and
their effect when choosing among alternative relaxations.

A fourth issue is constraint obligation. Our experience with factories has uncovered
pruolems in the practical application of constraints. Organizations change, and constraints
change with it. Hence, for how long, and during which activities is a reasoning system obliged
to foilow a constraint? A second aspect of obligation is resolving inconsistencies within a
constraint type. ISIS may te used by a number of departments in the factory; the same
constraint type with different values may be created and applied to the same object. For
example, both the material and marketing departments may place different and conflicting
due date constraints on the same order. The system must determine which one it is obliged to
follow. Another objective is to represent the knowledge necessary to determine the obligation
of ISIS in satisfying constraints.

A fifth issue is constraint generation. Constraints have many sources. Many may be defined
by the user during the creation of the plant model. Others may be defined dynamically as the
production proceeds. For example, the constraint on the mass of metal removed during an
operation is dependent on the mass of the metal going into the operation. Hence, the
constraint is determined at the time the operation is performed. The issue of constraint
generation is defining the ability to create and use constraints. An objective of ISIS is to
enable the specification of constraint generators in the representation.

Aside from the issues of representation, there are other issues of importance. For example,
how should ISIS react to poor results from the search process. All heuristic-based problem-
solving methodologics suffer from the periodic generation of poor solutions. Our objective is
to recognize poor solutions and to suggest ways of finding better solutions. In particular, how
to use constraints to: remove poor partial solutions during the search process, diagnose poor
final solutions, and suggest relaxations to refated constraints which may result in better
solutions.

Another important issue is efficiency. As described earlier, job-shop scheduling is
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combinatorially explosive; optimal solutions are generally not attainable. Yet, in the ‘actory, a
scheduling system must provide near realtime response: It cannot take hours to develop a
schedule. Hence, any solution to the above issues must alsg be computationally efficient.
Our objective is to design a system which will provide “good" results with a reasonable
amount of processing time.

1.3. Thesis Summary

The remainder of the thesis is composed of a review of the literature followed by chapters
on;

o Scheduling and constraint-directed reasoning review.
e Piant modeling,

e Constraint representation,

e Constraint-directed scheduling methods,

¢ Analysis, and

o Observations and conclusions.

The following summarizes these chapters:

1.3.1. Modeling

The ISIS modeling system is the repository of all the knowledge necessary to plan and
schedule production. It should be able to model the concepts of activities, factory state,
orders, etc. in a manner which is machine interpretable. The system is built using SRL (Fox,
1973; Wright & Fox, 1983), a knowledge representation system, which allows the user to mold
the ianguage to his neads. SRL is a frame-based language which encodes concepts as
schemata. A schema is a coliection of siots and values. Each schema, slot, and/or value may
have meta-information attached to it. In addition to attribute knowledge, slots define inter-
schema relations, through which slots and values may be inherited. The inheritance
semantics of a relation is user definable. SRL has been used to support a number of different
Intelligent Management System functions (Fox, 1981) including simulation (Reddy & Fox,
1983) , diagnosis (Fox Lowenfeld & Kleinosky, 1983), graphics, project management, and long
range planning (Kosy & Dhar, 1983).

The SIS modeling system is a muiti-layer system for modeling manufacturing organizations
in SRL. Its layers are: structural, basic semantics, world semantics. and domain semantics.
The basic concepts are that of states, objects, and acts. Acts transform states and objects.
Time and causality are primitive concepts in the language. Time relations provide time
ordering amongst states and acts. Causal relations define how states enable acts, and acts
cause states. A manufacturing operation is defined as an act, and time and causality relations
link it to other states and acts. Prototypes, instances, and manifestations are used to
distinguish classes, elements and states of objects and acts respectively. SRL's relation
definition mechanism permits the construction of new relations which are abstractions of
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these conceptual primitives. Hence, the relation nexi-operation is defined in terms of time
and causal relations. Operations may also be defined in multiple levels of abstraction.
Resources are defined as objects. Attributes and physical structure may be defined for an
object. Allocation of resources is defined as a state of possession by some operation or
resource with a specified time relation (e.g., duration). Orders are also represented with these
primitives. An order is simply a goal state (e.g., shipped) to be achieved by scheduling the
appropriate cperations.

The modeling language has an active interpretation. Its semantics supports the simulation
of parallel, discrete events (acts).

1.3.2. Constraints

The ISIS modeling system provides primitives for describing the common actions and states
in the scheduling domain. Experience has shown that a major part of our knowledge about a
plant is an understanding of constraints on the plant's operation, and alternatives to perform
when the constraints cannot be met. The modeling system is extended by providing the
capability to attach constraints to a schema, its slots, and values. Hence, any concept
representable in SRL, can also have constraints attached to it.

In scheduling, constraints may not always be satisfiable. Hence the representation of
alternatives is important. The modeiing system adds to the representation of constraints the
specification of relaxations. Relaxations may be defined cither as predicates, or choice sets
which can pe discrete or continuous. Associated with a relaxation is a preierence measure
which determines the preferred relaxations among those available. The representation of
constraints and their preferred relaxations is also a solution to the pattern specification and
matching problem.

The representation of constraints must not only cover what the constraint is, but when and
how to use it. The first problem in using constraints focuses on their relative importance.
Depending on the order, some constraints are more important than others. (SIS can
represent relative importance by either an absolute measure of importance, or by the
partioning of constraints into importance classes. Selecting which constraint to relax also
depends on how the relaxation will affect other constrainis. For example, reducing the
number of shifts in the plant may be preferred, but it may negatively affect the due date
constraint of many orders. Interact.ons of this nature are represented as relations in I1SIS. It
may also be the case, that the set of known constraints, may not be applicable to the
particular decision. The system’s obligation to satisfying a constraint depends on a number
of factors: the time over which the constraint is applicable, the consistency of the constraint
with others, the source of the constraint, and the context. 1SIS provides a representation for
all of this information. Lastly, constraints may be generated dynamically by attaching
constraint generators to relations in the model.
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1.3.3. Scheduling

The goal of ISIS is to construct schedules which satisfy as many constraints as possible in
near realtime. To achieve this, ISIS uses constraints to bound, guide and analyze the
scheduling/search process. The ISIS system performs a hierarchical. constraint-directed
search in the space of alternative schedules. Level 1 selects an order to be scheduled
according to a prioritization algorithm based on the category of the order, and its due date.
Level 2 performs a current capacity analysis of the plant. it determines the earliest start time
and latest finish time for each operation of the selected order, as bounded by the order’s start
and due date. The times generated at this level are coditied as constraints which are passed
to level 3. These operation time bound constraints constrain the start and end times of
operations at the next level. Level 3 performs a detailed scheduling of all resources
necessary to produce the selected order. Pre-search analysis begins by examining the
constraints associated with the order to determine the scheduling direction (forward vs
backward), whether any additional constraints should be created (e.g., due dates, work-in-
process), and the search operators which will generate the search space. A beam search is
then performed using the selected search operators. The beam search sequences the
application of operators. Each application of an operator generates another "ply” in the
search space. At each ply only the "n" highest raled states are selected for extension to the
next ply. The most often selected operators generate alternative operations, machines, and
queue positions for an order in the plant. Starting with a null schedule, alternative partial
schedules are generated either forward from the start date or backward from the due date.
An operation operator generates alternative states which represent alternative operations in
either the forward or backward direction. Once the operation is known for a state, other
operators extend the search by creating new states which bind the machine and/or the
execution time of the operation. A variety of alternatives exist for each type of operator. For
example, two operators have been tested for choosing the execution time of an operation.
The "eager reserver” operator chooses the earliest possible reservation for the operation's
required resources, and the "wait and see" operator tentatively reserves as much time as
available, leaving the final decision to level 4. This enables the adjustment of reservations in
order to reduce work in process time. Alternative resources are generated (e.g., tools,
materials, etc.) by other operators. Each state in the search space is rated by the set of
constraints found (resolved) to be relevant to the state and its ancestors. Constraints defined
to be in the set are thase which are attached to any resource (e.g., machine, tool, order, etc.)
specified by the state. Each constraint assigns a utility between 0 and 2 to a state; zero
signifies that the state is not admissible, 1 signifies indifference, 2 maximal support. The
rating of a state with multiple constraints is the weighted (by importance) average of the
constituent constraints. The importance of a constraint is defined statically or derived
dynamically according to goal information. Once a set oi candidate schedules have been
generated, a rule-based post search analysis examines the candidates to determine if one is
acceptable. Currently, any schedule with a rating greater than one is accepted. If no
acceptable orders are found, then diagnosis is performed. First, the schedules are examined
to determine a type of scheduling error. The error is then fed back to pre-analysis in order to
select new operators which are used to re-schedule the same order. The diagnosis of poor
solutions caused by constraint satisfaction decisions made at another level can be performed
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by analyzing the interaction relations linking constraints. A poor constraint décision ata
higher level can be determinen! by the utilities of constraints affected by it at a lower level, and
an alternative value chosen. Leve! 3 autputs reservation time bounds for each resource
required for the operations in the chosen schedule. Level 4 selects the actual reservations for
the resources required by the selected operations which minimize the work-in-process time.

The scheduting of ISIS is also reactive. The invalidation of reservations by actions such as
machine breakdowns or other orders taking too long on a machine, results in a minimal
re-scheduling of only the affectad crders, while attempting to maintain previous reservations.
I1SIS’s scheduling is also suggestive. If constraints cannot be met, it attempts to generate a
schedute which satisfies as many constraints as possible. For example, if the due date of an
order cannot be met by backwards scheduling, it attempts to schedule in the forward
direction and suggests an alternative due date.

1.3.4. Analysis

Two series of experiments are performed, all based on a portion of the turbine plant defined
by the plant scheduler. Each experiment in a series, tests a different combination of
constraints, scheduling direction, search operators, and levels of reasoning. One experiment
removes the capacity analysis and reservation selection levels. The resulting schedule
displayed high tardiness (65 of 85), and high work in process times with a makespan of 857
days. This is due to horizon effect caused by the coupling of beam search and insufficient
machine capacity. The experiment which included the capacity analysis and wait-and-see
reservation selection levels displayed fewer tardy lots (17 of 85), and very low work in process
time with a makespan of 588.8 days. At this point, machina capacity is the principal limitation
affecting tardiness. Experiments with all lots being scheduled backwards from the due date
and added capacity were also performed.

1.3.5. Conclusions

The contributions of this thesis are in three areas: representation, constraint-directed
search and job-shop scheduling. In the representation area, a more compiete semantics for
the modeling of organizations is provided which includes: states, acts, time, causality, multi-
level representaticn, and support for discrete simulation. In the area of search, ISIS
introduces a number of new concepts:

e A general representation for constraints with particular attention paid to the
representation of relaxations, interactions, and obligations.

o Constraint-tased pre- and post-search analysis to bound the solution space
before performing search, and diagnose poor constraint decisions at other levels.

¢ The generation and ecvaluation of constraint relaxations during the search
process.
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e The resolution and differentiation among constraints in evaluating states in the
search space.

e Hierarchically constrained search. A level in the hierarchy communicates only
constraints in order to guide search at the next level.

The contribution to job-shop scheduling made by this thesis is that it provides, for the first
time, a system which can represent and consider all the domain constraints during the
construction of a schedule. And do so in a reasonable amount of processing time. It also
provides incremental scheduling in reaction to changes in the plant's status, and suggests
alternative schedules when constraints cannot be satistied. _
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Chapter 2
Review

2.1. Introduction

Scheduling has been a major research topic in management science for many years. In
contrast, it has received little attention in artificial intelligence. But this is not to say that Al
has little to bring to the table. As management science has recognized, it is not practical to
separate planning from scheduling. The inability to construct an acceptable schedule may
require the construction of alternative plans. So a scheduling system must aiso consider the
planning problem. Secondly, much Ai research is concerned with general reasoning
processes. Hence many of the results are transferable among domains.

In the following, both Management Science (MS) and Al research are briefly reviewed. The
review of the MS literature focuses on some of the relevant research in the area of scheduling
and sequencing. The review of the Al literature focuses on géneral reasoning (problem-
solving) research, and on constraint research.

2.2. Management Science

Management science research in scheduling has focussed on understanding the variety of
scheduling environments that exist, and constructing scheduling algorithms specific to them.
Four types of "shops" are distinguished in the literature:

e single machine - single operation

¢ parallel machines - single operation

o flow shop series of machines - multiple operations
¢ job shop network of machines - multiple operations

A job is defined as having:

e one or more operations
¢ a processing time for each operation
¢ a due date

And the utility of a scheduled is measured in terms of:

¢ lateness
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o tardiness
o flowtime
e makespan

It was recognized early in management science that scheduling is an example of a constraint
satisfaction problem which could be optimally solved using mathematical programming
techniques. Integer programming approaches, while thearetically valid are useless
practically. Such approaches are members of the class of problems described as NP (Cook,
1 1971). This problem of algorithmic complexity has forced a biturcation cf the field.

One branch of research focuses on the attainment of optimal results, but algorithmic
complexity has restricted these results to the one and two machine cases (Lenstra & Rinnooy
Kan, 1980). And the achievement of these results requires the removal of much of the
constraints, and the focus on a single criterion for measuring schedule efficacy.

The second branch takes a heuristic approach cailed priority dispatch rules. A dispatch
rule is a local decision rule which determines the next job to be processed on a machine from
the set queued at the machine. Extensive simulation analyses have shown that the apparent
urgency rule (Rachamadugu, 1982), and the weighted shortest processing time rule (WSPT)
provide reasonable schedules with respect to a single criterion such as tardiness, while also
ignoring many of the constraints found in a typical factory (Conway, 1965).

The dispatch rule approach suffers in that it does not provide predictive information about
future operations and their machine reservations; it does rot consider alternative paths; it
does not incorporate other constraints. By contrast, the integer programming approach is
combinatorially explosive and can handle linear constraints on integer variables.

One approach to the solving the complexity problem is to take a hisrarchical approach to
scheduling (Hax & Golovin, 1978). Each level may incorporate a mathematical programming
approach, but considers only a subset of the total information. The resuits of one level,
restrict the processing of the next. By using levels of abstraction, the number of variables and
constraints is minimized, at the cost of ignoring possibly important information. Secondly, the
flow of information is from the top down. information at the lower levels cannot be fed back
into the higher levels to affect their processing.

All of the above systems can be described as "guidance" systems. They construct
schedules with are meant to guide the actual scheduling decision making performed on the
shop floor. They are limited to quiding because they lack the information necessary to make
detailed decisions. To circumvent this probiem, there has been intense investigation of
interactive scheduling systems (Godin. 1978). The interactive job-shop schedulers suffered
from the same problems listed above since they incorporated those algorithms (Ferguson &
Jones, 1969; Godin, 1968). But they did allow users to interactively modify schedules. More
recent work in interactive flowshop scheduling uses resource-usage leveling to measure
scheduling effectiveness, and a swapping heuristic to construct schedules (McDonald &
Hodgson, 1980).
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2.3. Artificial Intelligence

Two areas of research in artificial intelligence potentially impact the scheduling problem.
The first is planning research, the second is constraint analysis. As depicted earlier,
scheduling is a two part process: the first part is generating a sequence of tasks or actions to
be accomplished, the second is the assignment of resources over time to accomplish tasks.
Obviously, the latter impacts the choice of the former.

Before reviewing the planning literature, and at the risk of being pedantic, it is useful to
consider a simple model for planning, and see how research over the last two decades has
extended it. The most basic Al method is heuristic search. A search is made within a space of
possible solution states for a state that satisfies some goal description. A state can be
transtormed into another state by applying a heuristic (operator) to it. Planning can be viewed
as a form of heuristic search. The first problem in creating a planning system is to generate
the states relevant to reaching the goal. Given a description of the initial state, goal state, and
a set of operators, the operators can be iteratively applied to the initial state, and its
successors, until a goal state is found. The path from the initial state to the goa! state is a
solution path of operations, or plan. Depending on the "strength” of the operators, the space
elaborated can be large or small; however the better heuristics generate smaller search
spaces and find the solution faster. Planning, and related research, has focussed on a
number of issues: for instance, choosing what state to elaborate next, choosing which
operator to expand a state, and choosing alternative state representations and operators
(Amarel, 1967).

Planning research in Al can be traced back to the LT and GPS systems. LT (Newell &
Simon, 1956) introduced the concept of heuristic search and its preblem-solving states, goal
states, and the operators that transform states into other states. it worked backward from the
goal, splitting the problem into subproblems which it proved separately. GPS (Newell &
Simon, 1963) generalized the approach into what they termed Means End Analysis. By use of
a difference table, they were able to reduce the search space by focussing on only the most
relevant operations in achieving the goal state.

Another research area, not normally classified as planning, is that of game playing. Many of
the game playing programs in chess and checkers (Samuel, 1963) use heuristic search. The
selection of moves to make during a game is equivalent to constructing a plan. An important
contribution such systems have made to planning and scheduling is the rating of plans.2 Due
to the large size of the search space, game playing systems are required to prune the
examined states. To achieve this, an evaluation function is used to rate states, in effect
answering: of all the legal moves that can be made, what are the preferred moves? A variety
of search algorithms such as min-max, A* (Nilsson, 1971), and B* (8erliner, 1979), have been
used.

: 2" is not clear that many of the planning systems constructed to date have benefited form this research. This is
- due mainly to the "toyness” of the problems attacked.
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Early robot planning research resuited in the formalization of operators in the predicate
calculus. The STRIPS system (Fikes & Nilsson, 1971) represented operators as rules with
pre-conditions and post conditions. GPS-like means-end analysis was used to plan tasks.

Early on in planning research, Simon (1962) recognized that a planning system in a real
domain will have to struggle with the size of the search space. He proposed that planning be
done at differing levels of abstraction. By designating planning hierarchies. planning can
proceed at the highest, least detailed level and use the plan to constrain planning at the next,
more detailed level, and 50 on. One could view the ordering of differences and operators in
GPS's difference table as an implicit hierarchy. The first explicit manifestation of this concept
was ABSTRIPS (Sacerdoti, 1974). By separating pre-condition variables into levels of
importance, the pre-conditions would contain only the variabies important at the specified for
the current level of planning. While achieving good pertormance, a problem with this method
was the a priori designation oi variable levels.

Another issue of concern in planning was that of goal protection. The result of one
operation may be undone by another operation, before the result could be utilized in the
overall achievement of the goal. To deal with this, the HACKER system (Sussman, 1975) used
a debugging approach to fix a plan after it was constructed. A set of critics were dynamically
constructed to recognize errors and suggest corrections. Though an interesting approach, it
lacked extensibility. On the other hand, the NOAH system (Sacerdoti, 1975), took a
least-commitment approach to planning. NOAH wouid not sequence operations unless
forced to. This approach reduced the amount of backtracking necessary to secure a legal
plan because the current plan did not make any unnecessary sequencing decisions.

Reasoning at muitiple levels of representation can also be found in Hearsay-ll. Though the
Hearsay-Ii speech understanding system (Erman et al., 1980) cannot be viewed as a planning
system, its architecture has had a major effect on more current planning systems. Some of
the ideas that Hearsay-1l incorporated, are:

e muitiple leveis of representation,
e data and goal directed (bidirectional) problem-solving and,
¢ island-driving.

Hayes-Roth & Hayes-Roth (1980) call the combination of bidirectional problem-solving and
the ability to start problem-solving at any point in the search space (island-driving as opposed
to left to right), opportunistic reasoning. Opportunistic reasoning reduces the search space
by tocussing the planning ettort in areas that are of high certainty and/or highly constrained.
By extrapolating these "islands", further constraints on the more uncertain parts of the
planning space v:ill most-likely be generated.

Hearsay-1l did incorporate a planning mechanism. its policy modules (Hayes-Roth & Lesser,
1976) combined to form a focus of attention system that determined the sequence of
knowledge source executions. When parts of the utterance remained uninterpreted, it
dynamically determined what parts of the search space required more attention and turned
the systems resources towards reducing the uncertainty in those areas. By understanding
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what problem-solving methods it had available (i.e., knowledge sources) and its resource
constraints, it would decide the best next action. The ability to reason about "how to reason”
(or plan) has been called meta-planning in MOLGEN (Stefik, 1981b) and also appeared as
meta-rules in TEIRESIAS (Davis, 1976, Davis & Buchanan, 1977) As in conventional
hierarchical planning the ultimate result of these techniques is to reduce the space of states
that is searched by the system.

While much of the planning research mentioned above was concerned with how to reduce
the search space, there are other aspects of the planning problem that we have yet to
consider in this review. Game playing systems introduced search techniques for adversary-
oriented games. That is, the search would consider both the programs’ moves and the
opponents moves in determining a next move. The concept of adversary-oriented planning
has reappeared as counter-pianning in the POLITICS system (Carbonell, 1979). This research
can be viewed as a form of goal-protection where the system has to consider what the
adversary may do to prevent the system from achieving its goals.

Another type of planning is concerned with the satisfaction of multiple, possibly competing
goals. All of the above pfanning research is concerned with achieving a single goal. One of
the few pieces of research in the multiple goal satisfaction area is the system NUDGE
(Goldstein & Robert, 1977). A heuristic approach was developed for the domain of
appointment calendar maintenance. What was unique about this research was that it
included rules for the relaxation of constraints. When a schedule could not be found that
satisfied the existing constraints, it used the rules to prcpose alternatives (possibilities) by
relaxing certain constraints such as preferences. In this case, the preference constraint was
simply removed. Other rules peculiar to the appointment domain were used to alter existing
calendar requirements until a viable schedule was produced.

At this point in the review, we turn away from planning and look at the field of constraint
aralysis. Much of the constraint analysis research is recent, hence there is not a great deal of
literature to review. But one can view planning as constraint analysis in the sense that
operators incorporate canstraints in their pre-conditions.

One of the earlier works in constraint analysis was REF-ARF (Fikes, 1970). lts task was
similar to the linear programming task. Given a set of iinear equations that restrict the
possible values of a set of variables, can value assignments be found for them? Rather than
doing a brute force search for a set of bindings that satisfied all the constraints {(equations), it
used the constraints to reduce the generated binding set. Hence, the system can be viewed
as a classical generate and test, where the system was able to take the constraints and use
them in the generator to reduce the size of the search space.

Another type of canstraint which has existed for many decades can be called a binary
compatibility constraint. Consider a grammar. It defines the legal sentences that can be
formed from a symbol set. The grammar can be viewed as a constraint on the symbols that
will be recognized and/or generated. It defines what symbols are compatible with other
symbols when linearly ordered. Another example is the conceptual hierarchy of the SEMANT
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knowledge source of Hearsay-li (Fox & Mostow, 1977). It is similar to a grammar, but relaxes
the sequence constraint at the phrase level, allowing ungrammatical sentences, and sentence
fragments to be understood. A third instance is the 3D space description network used in
ARGOS (Rubin, 1978). In this case, a network was used to define adjacencies of objects in a
visual scene. This was then used to constrain the set of acceptable labelings of an image.

In many real-world applications, constraints are not binary, but are continuous. A
continuous compatibility constraint imparts a rating of how one symbol is compatible with
another. For example, in image understanding, how a pixel is tc be labeled is determined by
the labels of neighboring pixels. The knowledge of how to do neighborhood based labelling is
at best uncertain, hence the constraints that tie pixels together return a certainty rating for
each of the possible labelings of the pixel. The higher the rating, the more probable that the
label is correct. This type of constraint is the chief mechanism of relaxation (Zucker, 1976).
Relaxation can also be viewed as a network constraint system. The goal is to assign a value
to each node. A nodes value is constrained by the compatibility rules on the incident arcs.
CONSTRAINTS (Steele, 1930) can be viewed (loosely) as the dual of relaxation. Behavior
rules are associated with nodes, and values with arcs. When an arc value changes, a node's
ruies determine its effect (i.e., value) on the other incident arcs. The system could recognize
inconsistencies in arc values due to the lack of uncertainty in rule knowledge.

As planning moves from single level to hierarchical, so have relaxation and relaxation-like
processes. Single level relaxaticn often does not have enough information to adequately
label a scene. By creating muitiple levels of representation, higher levels of knowledge could
be incorporated (Zucker, 1977).

The next step was to combine both binary and continuous constraints in a hierarchical
system. Again, image understanding ressarch has been the area for this research (Ballard et
al., 1977; Russcll, 1979). The representation of constraints in image understanding has also
been extended to predicate calculus. Davis (1980) makes the case for predicate calculusas a
better representation for discrete relaxation constraints.,

MOLGEN combined planning with constraint-analysis (Stefik, 1981a). As plans were broken
into sub-problems, variable value constraints determined in one subproblem were propagated
to other subproblems. Hence variables would accumulate constraints across subproblems
betore an actual binding was chosen (a least commitment approach).

Engelman et al. (1980} in interactive frame instantiation associates constraints with groups
of slots. An interesting feature of their approach is that constraints form buckets, each having
its own priority. Hence, constraints have a prigrity ordering.

In getting closer to the scheduling problem, McCalla (1978), in planning driving paths
through a town, considered constraints such as possibie routes, and time and space
restrictions.

One of the few Al scheduling systems was in the domain of train scheduling (Fukumori,
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1980). It used a constraint-based approach to determine the arrival and departuve times of
trains at stations. Trains initially had fuzzy times assigned (i.e., a time span or belt).
Constraints then reduced the size of the belt. The problem was much simpler than the
general scheduling problem in that trains had only one route, and two resources, a track and
stations. The fuzziness of times was similar to that used in Hearsay-ll in dencting the time
span of an hypothesis when its boundaries were uncertain.

A second Al scheduling study was that of Vere (1981). in it plans are constructed, and times
associated with each step in the plan. A sophisticated algorithm for time propagation based
on interactions is described.

Lastly, Buliers et al. (1980) describe a logic-based factory modeling, question-answering
and scheduling system. While the approach is viable for question answering. they ignore the
complexity issue involved in scheduling job shops. The approach suffices for small problems
only.

2.4. Relationship to Previous Research

Our primary concern in this research is the construction of schedules for job-shops in a
rear realtime manner. [f factories with hundreds of orders, machines and tools are to be
scheduled then, scheduling algorithms must be found that find satisfactory solutions quickly,
while considering all the necessary constraints. Our approach is to perform constraint-
directed heuristic search; constraints are used to bound and guide the search (scheduling)
process.

Towards this goal, the most relevant research in the Al literature comes more from general
search and focus of attention research, than in any of the constraint research. The research
describes how to search in multiple levels of representation, and how to smooth the eifects of
terms in a polynomial evaluation function (Berliner, 1980), but does not describe how to
resolve dynamically the set of constraints by which to rate a state.

Much of the constraint research to date is application specific. There does not exist any
general theories of constraint representation, nor approaches to constraint relaxation. The
relaxation of constraints is important. Experience has shown that many constraints conflict,
making the construction of a schedule which satisfies all constraints impossible. Though
NUDGE (Goldstein, 1977) is the only system that expilicitly worries about constraint relaxation,
its approach is domain specific.

The fuzzy times of Hearsay-ll and Fukumori's (1980) train scheduling are an interesting
approach to reducing the representation of alternatives. And the focus of attention (Hayes-
Roth & Lesser, 1976) research restricts where in the search space to attend. But neither solve
the problem of having to bound the solution space in order to make the size of the solution
space feasible to search.
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In conclusion, many theories of search and constraint-based reasoning have been
proposed. But none have been combined to deal jointly with the problem of constraint
representation and relaxation, and the constraint-directed construction of schedules in near
reaitime.
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Chapter 3
ISIS Modeling System

Summary

The ISIS modeling system is the repository of all the knowledge necessary to
plan and schedule production. It should be able to model the concepts of
activities, factory state, orders, etc. in a manner which is machine interpritable.
The system is built using SRL (Fox, 1979; Wright & Fox, 1983), a knowledge
representation system, which allows the user to mold the language to his needs.
SRL is a frame-based language which encodes concepts as schemata. A schema
is a collection of slots and values. Each schema, slot, and/or value may have
meta-information attached to it. In addition to attribute knowledge, slots define
inter-schema relations, through which slots and values may be inherited. The
inheritance semantics of a relation is user definable. SRL has been used to
support a number of different Intelligent Management System functions (Fox,
1981) including simulation (Reddy & Fox, 1983) , diagnosis (Fox Lowenfeld &
Kleinosky, 1583}, graphics. project management, and long range planning (Kosy &
Dhar, 1983).

The ISIS modeling system is a multi-layer system for modeling manufacturing
organizations in SRL. Its layers are: structural, basic semantics, wcrld semantics,
and domain semantics. The basic concepts are that of states, objects, and acts.
Acts transform states and objects. Time and causality are primitive concepts in the
language. Time relations provide time ordering amongst states and acts. Causal
relations define how states enable acts, and acts cause states. A manufacturing
operation is defined as an act. and time and causality relations link it to other
states and acts. Prototypes, instances, and manifestations are used to distinguish
classes, elements and states of objects and acts respectively. SRL's relation
definition mechanism permits the construction of new relations which are
abstractions of these conceptual primitives. Hence, the relation next-operation
is defined in terms of time and causal relations. Operations may also be defined in
multiple levels of abstraction. Resources are defined as objects. Atiributes and
physical structu:e may be defined for an object. Allocation of resources is defined
as a state of possession by some operation or resource with a specified time
relation (e.g., duration). Orders are aiso represented with these primitives. An
order is simply a goal state (e.g., shipped) to be achieved by scheduling the
appropriate operations.

The modeling language has an active interpretation. Its semantics supports the
simulation of parallel, discrete events (acts).

I1SIS MOOELING SYSTEM
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3.1. Introduction

Computers as decision aids are proliferating in today's organization. Organizations are
purchasing more programs a! a ‘faster rate than ever before. With the advent of personal
computers, each user becomes a computer installation with their own databases anc
programs, and has the abiiity to taitor programs and data to suit his needs. Productivity gains
may be significant, but possibly short lived. Given the ability to create software systems in
their own “image”, the form and content of this software will diverge to the point of becoming
a "network of babel”. In the days when computers were expensive, such problems arose less
often. There was a small set of analysts who designed and built programs; the content and
form of information being (somewhat) standardized throughout the dp shop. Returning to the
days of the large dp shop is not the solution. A better approach would be to provide these
mini-installations with a shared language in which to build models. That is, the esperanto of
modeling.

Why would users want to share medels? A model is more than a simple database. It is an
accumulation of expertise: a repository in which both historical information, and the diverse
perspectives of members of the organization, are placed. Hence, it is a tocol with which to
analyze the organization and to instruct new members in its operation. As the distribution of
computing grows within an organization, so will the need to share and integrate the
knowledge generated therein.

The major task in the construction of a sharable modeling language is the choice of
conceptual primitives. Not only must these primitives span the set of concepts germane to the
application (e.g., planning and scheduling), but the language must satisfy other criteria as
well:

Generality: The madel should support a variety of functions in addition to scheduling, such
as: question-answering, simulation, and graphics.

Accessibility: The model should be accessible in two senses. First, it must be easily
perused and altered. Second, it must be perspicuous. That is, the
contents of the mode! must be easily and unambiguously understood by
the user.

Extensibility: Organizations change, and so does the way we think about them. A modeling
system which does not adapt to these changing views will restrict the ways
in which we may analyze it. Ultimately, the level of intelligent behaviour a
system will display may be limited by the model. Hence, the model must
be extendible, incorporating new ways of viewing and describing the
organization.

In this chapter, the ISIS modeling systern is described. The modeling system is composed of
multiple layers, with the core being an Al knowledge representation system called SRL:
Schema Representation Language (Fox, 1979; Wright & Fox, 1983). it provides the structural
primitives in which the domain’s conceptual entitics are defined. With these SAL structures, a
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set of conceptual primitives which is basic to many domains is defined. On top of this,
concepts germaine to scheduling are defined, and these are instantiated as a model for a
particular plant. The key feature of SRL which aliows this layered approach is the user-
definable relations. High level, domain dependent relations may be constructed from low
level, domain independent primitives. The efficacy of this approach will become clear in the
example of this chapter.

Throughout this chapter, an example of an order and a couple of operations required to
produce it will be used to explicate the modeling concepts. In particular, the sequence of a
milling and drilling operation will be described as a method for producing a turbine blade. An
order is a specification of a product to be produced for some customer. It describes
parameters such as due date, cost and quality to be satisfied by the shop. An operation is an
activity in which resources may be transformed, through one or more actions, into new forms
of resources. In deciding which operations to perform and when, the following types of
knowledge are required:

o The range of durations of the operation, including a probability density function.
e The operations which may precede or follow the current operation.

e The resources required: materials, machines, toals, fixtures, software, etc.

o The period of timé during which the above resources are required.

e The transformations applied to the resources. For example, is the cutting fluid on
a milling machine totally consumed?

e Are there any constraints on the usage of the resources?
o Who may perform the operation (i.e., operator).
o Substitutability of resources. if a machine is not available, can another be used?

¢ A description of how the ogerations are performed. What are the compaonents,
i.e., suboperations, comprising the operation.

The purposé of the I1SIS modeling language is to represent much of the information described
above.

3.2. Layer 1: Structure

The ISIS modeling system is based on the knowledge representation system SRL: Schema
Representation Language (Fox, 1979; Wright & Fox, 1983). SRL has its basis in schemata
(Barilett, 1932), which have come to been known as frames (Minsky, 1975), Concepts (Lenat,
1976), and Units (Bobrow & ‘Winograd, 1977; Stefik, 1979).

ISIS MODELING SYSTEM
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3.2.1. Schema Syntax

The basic unit for representing objects, processes, ideas, etc. is the Schema. Physically, a
schema is composed of a schema name (printed in the bold font) and a set of slots (printed in
small caps). A schema is always enclosed by double braces with the schema name appearing
at the top.

{{ operation
NEXT.OPERATION:
PREVIOUS-OPERATION:
MACHINE:

OPERATOR:
DURATION: }}

Figure 3-1: operation Schema

The operation schema (figure 3-1) contains slots defining attributes of the schema such as,
next-operation, duration, and operator.

SRL provides the user with a standard set of relations for defining classes of concepts and
their instantiations. For example, a milling-operation (figure 3-2) can be defined as an
instance of machining-operation, and the machining-operation is a sub-class (i.e., is-a)
of operation:

{{ machining-operation
IS-A: operation  }}

{{ milling-operation
creator. Mark.Fox
{ INSTANCE machining-operation
NEXT-OPERATION: drilling-operation
creation-date: 18-jan-83
MACHINE: excello } })
Figure 3-2: milling-operation Schema

3.2.2. Meta-Information

Meta-information may be attached to any part of a schema. It provides the user with a
means of documenting the information in a schema, and also tor defining the semantics of
schema, slots, and values. In figure 3-2 slots in italics are meta-information attached to the
schema, siot, or value depending on their indentation. In this example, the creator of the
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schema is "Mark.Fox", and the creation-date of the value in the NEXT-OPERATION slot is 18-
jan-83.

3.2.3. Inheritance

Schemata provide a "case"” or "frame" approach to knowledge representation.
Encapsulated in a schema is the information which defines the concept embodied by the
schema and meta-information about it. !n a schema. slots play a dual role. They define the
concept, and relate it to other schemata in the knowledge base. As a relation, a slot aliows
information to flow between schemata. In the above example, the instance relation allowed
information to flow from machining-operation to milling-operation.

Both is-a and instance are system-defined relations provided to the user. SRL provides
the user not only with the ability to define schemata, but also the ability to define new relations
and their inheritance semantics. All relations in SRL are defined as subtypes of the relation
schema.

{{ relation
DOMAIN: "schemata in the domain ¢of the relation"
RANGE: "schemata in the range of the relation”
INVERSE: "inverse of the relation”
PATH: "transitivity definition of relation"

INCLUSION: "slots & values which may be passed from the range to domain"
EXCLUSION: "slots & values which may NOT be passed from the range to domain”
ELABORATION: "specialization of slots in range into new slots in the domain®

MaP: "functional mapping of slots in range onto the domain"

INTRODUCTION: "definition of new siots in the domain"  }}

Figure 3-3: Relation Schema

To define a new relation, the user simply creates a schema of type relation and fills its slots
with the appropriate information. This is defined further in (Fox, 1979; Wright & Fox, 1983}.

In figure 3-2, the occurrence of single brace brackets denotes the opening of a slot. In this
case, the INSTANCE slot with the value machining-operation is opened. The
NEXT-OPENATION and MACHINE slots are inherited along the INSTANCE relation from
machining-operation and have their values defined relative to this perspective, i.e., being
an cperation. Slot openings distinguish among the versions of the same slot being inherited
along more than one relation, where each perspective having a different value.

1SIS MODELING SYSTEM
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3.3. Level 2: Basic Semantics

The semantics of the ISIS modeiing systems is defined using a layered approach
(Brachman, 1982). Level 1 defined the structure of schemata and inheritance semantics.
Level 2 expands the semantics to those mora epistemological in nature.

3.3.1. Classes, Sets and Instances

Classification hierarchies are found throughout manufacturing organizations. For example,
Group Technology classification hierarchies (Opitz, 1969) are used to classify products and
the operations that produce them. In order to differentiate among classes of objects, sets of
objects, and objects which exist physically, the concepts of intension, extension and sets are
adopted.

Schemata are divided into three types: prototype, instance, and set. A "prototype" schema
provides a description of a prototypical member of a set. An "instance" schema defines a
member of the set defined by the prototype. A “set" schema defines the set of instances
defined by a prototype. The schema type is specified in the meta-schema attached to the
schema, in the TYPE slot. Hence, the operation schema is further defined as:

{{ operation
type: prototype  }}
Figure 3-4: Prototype operation Schema

(the type slot actually resides in operation’s meta-schema.)

Class hierarchies are defined by relating prototypes with an is-a relation.

{{ machining-operation

type: prototype
IS-A: operation  }}

Figure 3-5: Prototyce machining-operation Schema

And an individual member of a class is related to its class by an instance relation.

ISIS MODELING SYSTEM
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{{ milling-operation
type: instance
INSTANCE: machining-operation }}

Figure 3-6: Instance of a milling-operation

Sets of objects are defined by a schema of type set. For example, a set of turbine blades can
be defines as:

{{ turbine-blade
type: prototype
1S-A: object 13
Figure 3-7: Prototype turbine-blade Schema

{{ turbine-blades
type: set
PROTOTYPE: turbine-blade
MEMBER: TS831 CS496 }}

Figure 3-8: Setof turbine-blades

The PROTOTYPE slot (inverse: prototype-of) contains the name of the prototype schema(ta)
defining the characteristics of the set's members. The actual members of the set are
contained in the MEMBER slot (inverse: member-of).

3.3.2. Attributes, Parts and Structure

The primary goal of ISIS is to choose and schedule the application of shop resources for the
production of an order. To achieve this the modeling system must provide ISIS with the ability
to represent the relevant information about a resource. The description cf resources should
provide at least two types of information:

1. A physical description of the resource. This provides the prototypical description
: . of an resource which is invariant over time. This information is used to determine
: if the resource can be used in a particular operation. For example, a machine
' may be too small to produce a large turbine blade.

2. A state description of the resource. This provides a time dependent description

of the resource. For example, a description of its availability. Much of the
g resources in a shop are aot consumable and exist in small numbers. Their
allocation must be known to those who may want to use them.

The physical description of an object containg many types of information such as attributes

ISIS MODELING SYSTEM
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(e.g., mass, material type, color), part descriptions (i.e., physically composition), and structure
(i.e., where the parts are located). These are defined as slots in a schema. Each type of
information is tormally distinguished by making each slot a one of the following slot types:

attribute/attribute-of. it defines an attribute of a schema that is true of the schema as a
whole. Concepts of mass and color are examples of this.

has-part/part-of. It specifies that the value of the slot is a constituent of the definition of
the schema. For example, a left-leg is part of a human, or B-52 bombers
are part of the nuclear defense triad.

structure/sub-structure-of. It specifies a structuring of the slots (relations) that are of type
part. For example, the right-leg is right-of the left-leg.

Consider the description of a milling-machine. It may specify a capacity (e.g., number of
orders it mav work on at one time), the cost-center it is part of, and a description of its
workbed.

{{ milling-machine
CAPACITY: 1
type: attribute
COST-CENTER: milling-center
type: part-of
WORD-BED: milling-bed
type: has-part
STATUS:
type: attribute  }}

rigure 3-9: milling-machine Schema with attributes

{{ milling-bed
IS-A; work-bed
WORK-BED-OF: milling-machine
type: part-of
LENGTH: 5.ft
type: attribute  }}

Figure 3-10: milling-bed Schema

The milling-bed and milling-machine are related by the work-bed/work-bed-of relations,
and milling-bed has a length of 5 feet.

These primitives provide a relational approach to the aitribute and structural description of
cbjects. This suffices for I1SIS's planning and scheduling needs. Other functions such as
generative process planning, or graphics dispiay may require other representations (e.g.,
oct-tree). These should be integratable with the SRL representation,

IS1S MODELING SYSTEM
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3.3.3. Abstraction

Reasoning often occurs at many levels of abstraction. Simon (1962) recognized that the
complexity of problem solving could be reduced by reasoning at different levels of
abstraction. Sacerdoti (1974) constructed a system which performs exactly that. In order to
facilitate such reasoning, a refines/refined-by relation is used to denote that a set of
schemata refine the concept represented by another schema.

for example a milling-operation may be refined into milling-setup and milling-run.

{{ milling-operation
INSTANCE: machining-operation
REFINED-BY: milling-setup milling-run  }}
Figure 3-11: Abstract milling-operation Schema

{{ milling-setup
INSTANCE: machining-operation
REFINES: milling-operation }}

Figure 3-12: milling-setup refines milling-operation Schema

{{ milling-run
INSTANCE: machining-operation
REFINES: milling-operation }}
Figure 3-13: milling-run refines mifling-operation Schema

3.4. Layer 3: World Model

The goal of the world model level is to define a set of primitive concepts upon which the
concepts tound in the scheduling domain may be defined. The apprcoach takenr in ISIS is to
define the production environment as a world where actions are performed which transform
the world from its current state into a new state. The actions are gperations, the states are
descriptions of products and assignments of resources. Included in this world model are
primitives for moceling time and causality, paralielism ang repetition of acts.

3.4.1, State/Acts

ISIS has as its most basic schema classes, an object, act, and state. Informally, an
object is a physical entity, an act transtorms one state or object into another, and a state
is a compound description of states and manifestations of objects. Hence, an operation
can be further defined as a sub-class of act:

SIS MODELING SYSTEM
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{{ operation
creator: "Mark Fox"

type: prototype

IS-A:act }}
Figure 3-14: operation Schema

3.4.2. Time

An important part of the modeling of organizations is the representation of time. Consider
the representation of a set of activities. Time is described in two ways. The firstis an absolute
specification of when an activity is to begin and for how long. The second is a relative
specification in which an activity is to precede or follow another activity. Duration is a rational
conceptualization of time, and precedence is an ordinal conceptualization of time.

A relative specification of time is used most often in the description of prototypical
concepts. For example, the operation graph for producing a product defines precedence and
duration, but does not specify an absolute time: this representation documents the production
process, and is used to guide scheduling. On the other hand, schedules specify actual times
for operations. Hence, the representation and reasoning about time must be supported at
each of these levels by the representation.

The concept of time in artificial reasoning systems has been explored (Bruce, 1972; Kahn &
Gorry, 1977; McDermott. 1982). The aporcach taken in ISIS is to represent time as intervals
and relations amongst intervals (Allen, 1981; Smith, 1983). The time that a state or act may
occur is defined by a time interval as opposed to a single point, or by reference to known time
intervals.

The first step towards the representation of time is to specity the units of time, a scale and
the functions to manipulate time. This is defined by the time-line schema (Smith, 1983).

{{ time-line
POINT-FORM: "specifies the form of a point of time"
START-POINT: "starting point of time line"
END-POINT: "end point of time line"
GRANULARITY: "granularity of time line"
ADD: "function for adding two time points"
OIFF: "function for subtracting two time points” }}

Figure 3-15: time-line Schema
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A time interval is defined by a schema as having a start time, and end time and a duration:

{{ time-interval
BEGIN-TIME:
END-TIME:
DURATION:
DATED-BY: }}

Figure 3-16: time-interval schema

Given values for two of the three slots, the third may be derived. Hence absolute
descriptions of when an act may occur is provided by specifying the begin and end times. if
only the duration of an act is known, this is specitied by filling only the DURATION slot. The
DATED-BY slot points to the time line in which the interval is defined.

Ordinal (relational) specification of time is represented by slots (relations) in a schema. If
act A is to occur before act B, then a BEFORE slot will exist in A with a value of B. The following
time relations are defined in iSiIS:

before (figure 3-17). Specifies that an act or state takes place before another act or state in
time.

{{ before
{ 1s-A time-relation
DOMAIN:
range: (or (type is-a act) (type is-a state))
RANGE:
range: (or (type is-a act) (type is-a state))
INVERSE: after }
TIME: before )}

Figure 3-17: Before Schema

The DOMAIN of before is a subtype of either act or state. The RANGE is a subtype of either
act or state. The inverse of before is the after relation.

during. Specifies that an act or state takes place during another act or state in time. Its
inverse is includes.

meet. Specifies that an act or state takes place before, but without any intervening time,
ancther act or state in time. Its inverse is met-by.

overlap. Specifies that an act or state begins before another act or state in time, but ends
after the second begins and before it ends. Its inverse is overlapped-by.
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time-equal Specifies that an act or state shares the same time interval with another act or
state in time. lts inverse is time-equal.

The representation of the milling-operation’s duration can be defined as follows:

{{ milling-operation
INSTANCE: machining-operation
WORK-CENTER: milfling-center
DURATION: {{ INSTANCE time-intervai
DURATION: 5 }} }}

Figure 3-18: milling-operation Duration Specification

The contents of the DURATION slot is an instance of a time-interval whose duration is 5
hours (time units are defined in the time-line schema).

Operation precedence may be defined by means of the time relations. In this example
milling-operation is to occur before the drilling-operation.

{{ milling-operation
INSTANCE: machining-operation
WORK-CENTER: milling-center
DURATION: {{ INSTANCE time-interval
DURATION: § }}
BEFORE: drilling-operation }}

Figure 3-19: milling-operation Precedence Specification

And the sub-operations which comprise the milling-operation and are performed during
the same time period are defined by an INCLUDES relation. Hence, milling-operation is
refined-by milling-setup and milling-run, and they are included in time.

{{ milling-operation

INSTANCE: machining-operation

WORK-CENTER: milling-center

DURATION: {{ INSTANCE time-interval
DURATION: § })

BEFORE: drilling-operation

REFINED-BY: milling-setup milling-run

INCLUDES: milling-setup milling-run H

Figure 3-20: milling-operation sub-operation time specification
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The definition of milling-setup and milling-run, in turn, have their own time retations
which define their time-oriented sequencing.

3.4.3. Causality

The concept of precedence in the sequencing of operations encodes another primitive
concept, that of causality. The difference between time and causality in this case is subtle,
but important. Not onlty does the milling operation precede the drilling operation in time, but it
must be pertormed before the drilling operation. If the milling operation is not performed,
then the drilling operation cannot be performed; performance of the former enables the
performance of the latter. If only the time relation existed. then the drilling operation cou'd be
performed even it the milling operation was never performed; non-performance of the
operation is not incensistent with the time relation. The approach taken in ISIS in
representing causal information is a derivative of the common sense reasoning system
defined by Rieger and Grinberg (1977) and London (1978).

Causality is represented as relations in SRL. The approach differs from that of Rieger &
Grinberg in that time may be specilied separately. On the other hand, causality implies a time

ordering which is represented in the causal relation as a range restriction on the time slot.

The following are the five basic causal relations:

{{ cause
{1s-A time-relation
DOMAIN:
range: (type is-a act)
RANGE:
range: (type is-a state)
INVERSE: caused-by
TIME:
range: (or before meet overlap includes) }
CAUSALITY: cause
CAUSAL-CONDITION:
default: t }}

Figure 3-21: cause Schema

The cause relation (figure 3-21) links an act to a state. It defines that the execution of a
specified act results in the specified state. The CAUSAL-CONDITION slot is tilled by a condition
schema which must be true in order for the cause to take effect (i.e., the state to follow from
the act). The causal condition is, in essence, a gating condition on the interpretation of the
relation. Note that time is included in the definition of cause, hence the time of the cause may
be included in its specification. The inverse of cause is caused-by,
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An enabie relation is the reverse of the cause relation. It links a state to an act. lts inverse
is enabled-by. Time is restricted to {or before meet overlap includes).

A third type of causal relation is a statecouple. It defines two states as being related, but
the actual nature of the relation is unknown. Its inverse is statecouple +inv. Time is

restricted to (or overlap inciudes time-equal).

The fourth type of causal relation is cause-equal. It states that two acts, or states may be
equivalent. lts inverse is cause-equal. Time is restricted to time-equal,

The last type of causal relation is an actcouple:’ . ltis similar to a state-couple, but links
acts. Iltsinverse is actcouple +inv. Time is restricted to (or overiap includes time-equal).

The complete definition of precedence can now be represented:

{{ milling-operation

INSTANCE: operation

WORK-CENTER: milling-center

DURATION: {{ INSTANCE time-interval
DURATION: 5 )}

BEFORE: drilling-operation

ACTCOUPLE: drilling-operation

REFINED-BY: milling-setup milling-run

INCLUDES: milling-setup milling-run 3]

Figure 3-22: milling-operation Causal Specification

Hence, two relations (slots) are used to define precedence. An alternative and more
compact approach is to take advantage of SRL's relational capabilities. The user may define
for their application new relations beyond the simpie is-a and instance relations. For
example, a next-operation schema may be defined which incorporates the time and
causality information:

{{ next-operation

{1s-A relation

TIME: before
CAUSAULITY: actcouple } }}

Figure 3-23: next-operation Schema

And milling-operation may be defined as follows:

ssquivalent to action thread (London, 1973)
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{{ milting-operation
INSTANCE: operation
WORK-CENTER: milling-center
DURATION: {{ INSTANCE time-interval
DURATION: 5 }}
NEXT-OPERATION: drilling-operation
REFINED-BY: milling-setup milling-run
- INCLUDES: milling-setup milling-run 13

Figure 3-24: milling-operation next-operation Specification

3.4.4. States Revisted: Possession and Manifestations

Basic to the representation of an operation is the specification of resources that are used
during its execution. These resources must be available before the operation may proceed.
For example, tools, materials, fixtures, and even the operator must be present before the
operation may be performed. The time it takes to assemble these resources is normally
included in the setup definition of the operation. Conceptually, a state of the organization's
world must exist in which the work center where the operation is tc be performed possesses
the resources before, and nossibly during the operation. Hence. this state must exist before
(in time) the operation is performed, and iis existence enables the execution of the operation.

The concept of possession of resources is represented as a simple state.

{{ possess
1S-A: state
POSSESSOR:
POSSESSION: }}

Figure 3-25: possess Schema

If the milling operation requires a wrench during its execution, it would be ENABLED-BY the
possession of the wrench:
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{{ milling-operation

INSTANCE: operation

WORK-CENTER: milling-center

DURATION: {{ iINSTANCE time-interval
DURATION: § }}

NEXT-OPERATION: drilling-operation

REFINED-BY: milling-setup milling-run

INCLUDES: milling-setup milling-run

ENABLED-BY: pOSSess-wrench 3]

Figure 3-26: milling-operation next-operation Specification

where the possession of a wrench is defined as:

{{ possess-wrench
{ INSTANCE possess
POSSESSOR: milling-center
POSSESSION: wrench }
INCLUDES: milling- operation }}

Figure 3-27: possess-wrench Schema

possess-wrench not only specifies that the milling center must possess a wrench, but it
also specifies the time of its possession. That is, the time interval must span the time of the
milling-operation. If this state specification is satistied, then the state exists, and it enables
the performance of the milling-operation.

A simple state description may also include the description of a resource which is true
during some time period. In ISIS, this is viewed as a state dependent description ard is
represented by creating a schema which defines the time dependent information about a
resource and linking it via a manifestatior: relation* o the instance. A manifestation of an
object or resource denotes a description which is true for some specified time interval. Figure
3-28 depicts a manifestation of the milling-machine with a status of busy over the time
interval defined by the week-38 schema.

‘Tho concept of manifestaticns was elaborated by Hayes (1973).
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{{ milling-machine-man-1
{ MANIFESTATION milling-machine
STATUS: busy
TIME-EQUAL: week-38} }}

Figure 3-28: Manifestation of milling-machine

Manifestations of resources, and objects in general, are considered to be state descriptions.

3.4.5. Composite States and Paralfelism

Operations, and acts in general, may occur in parallel. While the representation of
enablement and causality can specify more than one subsequent state or act, its
interpretation is ambiguous; it is unclear whether all, some or one act is to occur. The
representation must be extended to represent not only what may occur next, but the
conditions of their joint cccurrence.

The specification of parallelism in the modeling system is accomplished by introducing

composite states. A composite state is consiructed out of simple state descriptions. Three
types of composite state schemata are defined:

and: specifies that all of its sub-states must be true in order for the composite to be true.

or: specifies that one or more of its sub-states must be true in order for the composite to be
true.

xor: specifies that only one sub-state is to be true in order for its composite to be true.

The and state is represented schematically as:

{{ and
IS-A: state
SUB-STATE:
type: has.part
range: (set (type is-a state)) }}
Figure 3-29: and schema

or and xor are defined similarily.

Composite staiess may be created using these state schemata. For example, the
requirement of a wrench and an operator is defined as follows:

ISIS MODELING SYSTEM




PAGE 40

{{ enable-milling
{ INSTANCE and
SUB-STATE: possess-wrench possess-operator }  }}

Figure 3-30: enable-milling Schema

{{ possess-operator
{ INSTANCE possess
POSSESSOR: milling-center
POSSESSION: milling-operator }
OVERLAP: milling-operation }}

Figure 3-31: possess-operator Schema

Note that the possess-operator state is a SUB-STATE of the enable-milling state. The
time over which the milling center must possess an operator overlaps the performance cf the
operation. Hence, the operator is not required throughout the operation.

It a sub-state of a composite state does not have a time relation associated with it, the time
refations associated with its enclosing state descriptions are inherited along the sub-state
relation. That is, a more complete definition of possess-wrench is:

{{ possess-wrench
SUB-STATE-OF: enable-milling
{ INSTANCE possess
POSSESSOR: milling-center
POSSESSION: wrench }
OVERLAP: milling-operation }}

Figure 3-32: possess-wrench Schema

Where the sub-state-of relation is defined by:
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{{ sub-state-of
{1s-A relation
DOMAIN: .
range: (type is-a state)
RANGE:
range: (type is-a state)
INVERSE: sub-state
INCLUSION: {{ INSTANCE inclusion-spec
SLOT: (type is-a time-relation) }}
} 1

Figure 3-33: sub-state-of Relation Schema

This definition of sub-state-of defines that any slot that is-a a time-relation, may have its
values inherited along it.

3.4.6. Repetition

Rieger and Grinberg (1976) recognized that the concept of causality must include the
concepts of discreteness or continuity in both state and act. Their approach to this problem
was to elaborate a variety of "continuous" and "one shot" causal links. In our approach, the
separation of time from causality covers much of these concepts. For exampie, if a state must
persist over the time of the act, then it will be related by a time-equal or includes relation.

Another issue is the extent to which a state or act may be repeated. For example, an
operations graph may show a re-work cycle when the product is defective. It is commonly the
case, that the amount of re-work which may be performed is limited, hence the number of
times an act may be repeated is constrained.

Limitations on the number of times an act may occur is specified indirectly by state
descriptions. The definition of a state is extended to include an upper bound on the number
of times it may occur (see section 3.7 for the description of the procedural interpratation of
repetitive states).

{{ state:
MAXIMUM-MANIFESTATION:  }}

The maximum-manifestation slot specifies the number of occurrences of the state. Note
that the term manifestation is used. The prediction or appearance of a state in time is linked
to the original state description via a manifestation reiation. Hence, the operations graph is
detfined in terms of intances of operations and states, but predicted (reservations) or actual
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(history) occurrences of states and acts are manifestations of the instances. See section
3.6 for turther details.

3.4.7. Time Revisited: The Future and the Past

The purpose of job shop scheduling is t0 select a sequence of operations to produce a
product. For each operation, a set of resources are assigned and a time of execution is
specified. In other words, scheduling specifies, or more realistically, predicts a sequence of
states that should occur in the plant’s future. It follows then, that the representation of states
should include the ability of spgcifying when the state will occur, or be "true".

Conversely, the ISIS modeling system must also record historical information. That is,
records of past performance of the shop in order to ascertain how well schedules are met,
determine time standards, etc. Hence, the modeling system must also be able to specity
states of the system which existed in the past.

Fortunately, the method of speciltying time is general enough to support both. Each state
may have specified a time interval over which the state was known or is predicted to exist. In
order to determine whether a state description refers to the past or future, one must simply
compare the time-interval to where "now” is specified on the corresponding time line.

In order to represent the prediction of a state in which an act occurs, the use of
manifestations is extended to acts. A manifestation of an act is a state which describes the
act as having taken place or is predicted to take place.

3.4.8. Scheduling Goals

The first step in creating a system to perform planning and scheduling is the definition of
goals. The meta-goal of ISIS is to schedule the shop. This is achieved through the
satisfaction of the subgoals of scheduling each order. Each order in ISIS is a goal state.
That is, it is a state which is to be achieved by (SIS. An order specifies parameters which are
to be satisfied by ISIS, such as the product to be produced, quantity, delivery date, cost and
customer,

{{ goal
1S-A: state }}

Figure 3-34: goal Schema
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3.5. Layer 4: Domain Semantics

A major goal in our use of SRL for plant modeling is to construct a language which closely
resembles that used by shop personnel. If the model is able to represent concepts in the
same language as used by shop personnel then the hypothesis is that it should be easier for
them to create and maintain such models. On the other hand, if ISIS is to be usable across
multiple plants which have different terminology. then its representation should be as piant
independent as possible. On the surface, these two goals appear to be contradictory. In
reality they are not. By taking a layered approach in which plant dependent terminology is
defined in terms of plant independent terminology, it is possible for ISIS to interpret a plant's
model.

Level three defines the plant independent terminology. Level four defines the plant

dependent terminology in terms of level one through three concepts. In the rest of this
section, examples of scheduling terminology are defined.

3.5.1. Operations

As described earlier, the concept of an operation is basic to scheduling. It can be defined in
terms of an act:

{{ operation
type: prototype
IS-A act
WORK-CENTER:
type: attribute  }}

Figure 3-35: operation Schema Re-visited

The operation schema is a prototype with a single attribute WORK-CENTER. As seen in
figure 3-2, a milling-operation can be defined as an instance of an machining-operation,
which is a sub-class of operation. As shown earlier, an operation may be related to other
acts and states by means of the time and causal relations (see figure 3-26).

Conceptually, milling-operation is the abstraction of a more detailed set of operations to
be performed. In this case, they are setup-milling and run-milling. This is equivalent to a
"stepwise refinement” approach to the definition of acts (Wirth, 1671). The refines relation
provides the user with the ability to implement models at various leveis of detail. Hence, the
milling-operation may be defined as:
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{{ milling-operation
INSTANCE: operation
WORK-CENTER: milling-center
DURATION: {{ INSTANCE time-interval
DURATION: § }}
NEXT-OPERATION: drilling-operation
INCLUDES: milling-setup milling-run
REFINED-BY: milling-setup milling-run
ENABLED-8Y: enable-milling n
Figure 3-36: milling-operation refined-by Specification

This defines the milling-setup and milling-run operations as being refinements of the
milling-operation, and being performed during the same time-interval. These two relations
may be combined into a single sub-operation relation:

{{ sub-operation
{ 1s-A refined-by
DOMAIN: :
range: (type is-a operation)
RANGE:
range: (set (type is-a operation)) }
TIME: includes  }}
Figure 3-37: sub-operation Schema

Allowing the milling operation to be equivalently defined by substituting Sus-OPERATION for
REFINED-BY and INCLUDES:

{{ milling-operation
INSTANCE: operation
WORK.-CENTER: milling-center
DURATION: {{ INSTANCE time-interval
DURATION: § }}
NEXT-OPERATION: drilling-operation
SUB-OPERATION: milling-setup milling-run
ENABLED-8Y: enable-milling 3]
Figure 3-38: milling-operation sub-operation Specification

In the discussion of composite states, the possession of a wrench was defined as
overlapping the time interval of the milling operation. At the milling operation level of
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abstraction, that was all that is known and could be explicitly defined. But with the definition
of the milling operation’s sub-operations, the exact time of possession of the wrench can be
defined more specifically. That is, the wrench is required only during the milling-setup
operation:

{{ possess-wrench
SUB-STATE-OF: enable-milling
{ INSTANCE possess
POSSESSOR: milling-center
POSSESSION: wrench
OVERLAP: milling-operation
INCLUDES: milling-setup }  }}
Figure 3-39: possess-wrench Schema

Note that the possess-wrench schema now has time relations linking the possession of
the wrench at two levels of abstraction. It is obvious that the overlap relation may be deduced
from the includes relation.

Figure 3-40 graphically depicts a sub-set of an operations graph.

3.5.2. Reservations

An important attribute of resources for scheduling purposes is the specification of their
allocation to scheduled operaticns. This is accomplished by adding a RESERVATION slot (i.e.,
the inverse of possesion in posses schema) to an object and filling it with a manifestation of a
possess schema. Hence, the full effect of ¢reating a manifestation of a possess-wrench
schema is to add to the POSSESSION and POSSESSOR schemata the name of the manifestation:

{{ milling-center
INSTANCE: work-center
POSSESSES: m-possess-wrench }}

{{ wrench
INSTANCE: tool
RESERVATION: m-possess-wrench  }}
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Figure 3-40: Operations Graph

3.5.3. Products

A product is yet another type of object. One additional slot is added, a pointer to the first
operation to produce_it.

{{ product
1S-A: object
FIRST-OPERATION: }}
Figure 3-41: product Schema

Hence, a turbine blade is a product with the first operation being the milling-operation,
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{{ turbine-blade
{ 1s-a product
FIRST-OPERATION: milling-operation }  }}

Figure 3-42: turbine-blade Schema

3.5.4. Orders

An order is a sub-type of the shipped state which defines the PRODUCT, QUANTITY,
CUSTOMER, and SHIP.DATE. An order for a turbine-blade would have the following
structure:

{{ shipped
1S-A: goal
PRODUCT:
QUANTITY:
SHIP-DATE:
CUSTOMER: }}

Figure 3-43: shipped Schema

{{ order
is-a: shipped  }}
Figure 3-44: order Schema

{{ turbine-blade-order
{ INSTANCE Oorder
PRODUCT: turbine-blade
SHIP-DATE: 28-feb-83
QUANTITY: 128
CUSTOMER: ontario-hydro
FIRST-OPERATION: } }}

Figure 3-45: turbine-blade-order Schema

ISIS MODELING SYSTEM

t-gm 13




PAGE 48

3.6. Schedule

A product is defined to be an object which may be produced by interpreting the operations
graph attached to it. The operations graph is composed of instances of states and acts. The
question then is how is a schedule defined if instances cannot themselves have instances? As
described earlier, states, objects, and acts may have manifestations. A manifestation defines
a state during some time period which has or will occur. The view implemented in the
modeling system is that actual schedules are manifestations of the states and acts found in
the product's operations graph; where product points to instances of states and acts, an
order points to manifestations of those instances. For example, the schedule for the drilling
and milling operations would be composed of manifestations:

{{ turbine-blade-order
{ INSTANCE Order
FIRST-OPERATION: m-milling-operation } }}

{{ m-milling-operation
{ MANIFESTATION mifling-operation
NEXT-OPERATION: m-drilling-operation
ENABLED-BY: m-enable-milling } 3

{{ m-enable-milling
{ MANIFESTATION enable-milling .
SUB-STATE: m-possess-wrench m-possess-operator }  }}

{{ m-possess-wrench
{ MANIFESTATION possess-wrench
POSSESSION: wrench
POSSESSOR: milling-center }  }}

3.7. Model Interpretation/Simulation

Another goal of our modeling effort is to construct a language which can support multiple
functions. Scheduling is just one of the many functions found in manufacturing
organizations. Of late, there is increasing use of simulation systems in analyzing current and
future modes of production. Given the depth of information contained in the ISIS model, it
should be possible to write an interpreter which can simulate the multitude of activities
described.

The ISIS modeling system can support discrete event simulation. The Knowledge-Basad
Simulation (KBS), system is an SRL interpreter for discrete event simulation (Peddy & Fox,
1982). It performs simulations based on event rules embedded in schemata. Hence, the
semantics of an event are defined by rules in event slots in a schema. KBS does not interpret
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schema nor relations types directly, but relies on event rules in schemata to define their
behavior. The rationale for this approach was to keep KBS independent of the domain
semantics.

An aiternative approach to providing discrete event simulation is to build an interpreter
which understands level three semantics. The interpretation of the ISIS model is similar to the
token passing method employed in Petri nets (Petri, 1966). The interpretation proceeds as
follows:

1. The simulation clock is set to its initial time.
2. Tokens are placed at all initial (true) states.

3. If the state at which the token is located is a composite state, then copies of the
token are placed at the constituent states if it is an and and all the constituents
are true, at only the true states if an or, or a single true state if an xor. A token
may wait at either of these composite states if there do not exist the appropriate
set of true constituents.

4. Tokens situated at states which are either state-coupled with another state, or
enable an act are passed from the current state to the related state or act.

5. For all acts to which a token has just arrived. the exit time of the token is
calculated from the CALCULATE-DURATION slot in the act. The exit time of each
token is placed on the simulation calendar. Any action associated with the actis
executed.

6. Current simulation time is set to the time of the earliest calendar event (token exit
from an act).

7. The act associated with the earliest calendar event has its token transferred along
a cause link to an act or state respectively (act-couple links are ignored due to the
ambiguity they introduce in interpretation).

8. Gotostep 3.

The above steps sketch how the ISIS mcdel may be interpreted to support simulation. Much
detail is lelt out, e.g., how to calculate duration times, due to the focus of this chapter.

3.8. Conclusion

The modeling system described in this chapter does not represent a complete theory of
organization modeling, but is a synthesis of many basic concepts found in artificial
intelligence and operations management which are necessary to support the scheduling
process in factories. It has been shown by example that the primary concepts necessary to
support scheduling can be easily represented. The next question is whether the system also
supports the criteria mentioned in the introduction:

1SI5 MOOELING SYSTEM




PAGE 50

s A e o e+

Generality. SRL provides the user with the ability to mold the semantics of the language to

their individual needs. It does not force a particular perspective on the
user. For the ISIS application, as set of conceptual primitives was chosen
to be domain independent. The independence or universality of these
concepts support a variety of applications in addition to scheduling.

Accessibility: The set of conceptual primitives was also chosen to be understandable. If the

user understands the primitives then he should understand the model.
Using the relation definition capabilities of SRL, the user may construct
slots whaose names match those used in the domain (e.g., next-operation),
but whose semantics are defined by these primitives. Perusal and
alteration capabilities are already provided through SRL.

Extensibility: The availability of the representation of meta-information and user-definable

relations enables the user to extend the language in any direction they
wish. The layered approach taken by the modeling system shows how the
system can be extended in the appropriate directions.

We expect that the ISIS modeling system will continue to evolve as more experience is
acquired in the factory.
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Chapter 4
Constraints

Summary

The ISIS modeling system provides primitives for describing the comman
actions and states in the scheduling domain. Experience has shown that a major
part of our knowledge about a plant is an understanding of constraints on the
plant’s operation, and alternatives to perform when the constraints cannot be met.
The modeling system is extended by providing the capability to attach constraints
to a schema, its siots, and values. Hence, any concept representable in SRL, can
also have constraints attached to it.

In scheduling, constraints may not always be satisfiable. Hence the
representation of alternatives is important. The modeling system adds to the
representation oi constraints the specification of relaxations. Relaxations may be
defined either as predicates, or choice sets which can be discrete or continuous.
Associated with a relaxation is a preferance measure which determines the
preferred relaxations among those available. The representation of constraints
and their preferred relaxations is also a solution to the pattern specification and
matching problem.

The representation of constraints must not only cover what the constraint is, but
when and how to use it. The first problem in using constraints focuses on their
relative importance. Depending on the order, some constraints are more important
than others. ISIS can reprasent relative importance by either an absolute measure
of importance, or by the partioning of constraints into importance classes.
Selecting which constraint to relax also depends on how the relaxation will affect
other constraints. For example, reducing the number of shifts in the plant may be
preferred, but it may negatively affect the due date constraint of many orders.
Interactions of this nature are represented as relations in ISIS. It may also be the
case, that the set of known constraints, may not be applicable to the particular
decision. The system's obligation to satisfying a constraint depends on a number
of factors: the time over which the constraint is applicable, the consistency of the
constraint with others, the source of the constraint, and the context. ISIS provides
a representation for all of this information. Lastly, constraints may be generated
dynamically by attaching constraint generators to relations in the model.
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4.1. Introduction

ISIS implements a constraint-directed search approach in its construction of job-shop
schedules. Though the approach is compiex, it can be viewed as a variation of generate and
test. That is, there exist a set of operators which define a space of states which represent
partial and full schedules, and there exists knowledge about the domain which is used to rate
each state in the search space. The view taken in ISIS concerning the representation and
utilization of this domain knowledge, is that it can be represented in a single formalism of
constraints. Thatis «nowledge such as:

e organizationai goails,

e physical characteristics and capabilities,
e causality,

o preferences of action and selection, and

e availability of resources,

may all be viewed as constraints. Additionally, there may exist knowledge at the search level
which may constrain the reasoning process. For example, certain types of orders, e.g., forced
outage, may be scheduled in a manner differently than other orders, e.g., shop orders. These
can be viewed as meta-constraints, since they operate at a level above the actual scheduling
problem.

Consider the due date associated with a lot. In reality, the due date is a constraint which the
scheduling system should attempt to meet; it constrains the set of admissible schedules. If
ISIS is to reasan effectively with this type of constraint, the following information should be
known to the system:

e How important is the constraint relative to the other known constraints? Is it more
important to satisfy the cost constraint than the due date?

o If | cannot find a schedule which satisties the constraint, are there relaxations of
the constraint which can be satisfied. l.e., is there another due date which is
almost as good?

o |f there are relaxations available for the constraint, are any more preferred?
Perhaps | woulid rather ship the order early rather than late?

o If | chose a particular relaxation, how will it affect the other constraints | am trying
to satisfy? Will meeting the due date negatively or positively affect the cost of the
order?

¢ Under what conditions am | obliged to satisfy a constraint? What if there are two

constraints specified for the same variable? l.e., two different due date for the
same lot? Or there may two ditferent due dates depending on the time of year.
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In essence, a constraint is not simply a restriction on the value of a slot etc., but the
aggregation of a variety of knowledge used in the reasoning process. Hence, the
implementation of a theory of constraint-directed search requires an answer to the following
questions:

1. How are constraints to be represented?

2. How are they to be interpreted during the search process?

The first question is the focus of this chapter, the second is the focus of chapter 5.

his chapter begins with a basic description of constraints, followed by a description of their
relaxations. In the following, we focus on applicability issues of constraints, in particular,
issues in the representation of:

o the relative importance of multiple constraints,
o the obligation to satisty constraints according to time, context, and source,
e the interactions among constraints, and

o the dynamic generation of constraints.

This is followed by some examples.

4.2, Structural Constraints

Constraints come in many guises. Section 1.1.1 provided a glimpse of the many kincs of
constraints found in the job-shop scheduling domain. If ISIS is to represent these constraints,
and moere importantly, any new constraints not previously identified, then the constraint
representation should be as domain independent as possible.

Many of the constraints found in the scheduling domain restrict the choice of value for some
attribute, e.g., the due date of an order, or the relation between two or more schemata, e.g.,
the next operation to be performed. Constraints of this type may be described independently
of the application. That is the constraints may be defined in terms of the structural level of
representation, i.e., the representation language, as opposed to the domain level.

SRL/1.5 provides a good starting point for solving this problem; it provides a syntax for the
representation of concepts. If constraints can be defined at the structural level of SRL/1.5,
then they should subsume any constraint representable at the domain level. The following
defines three types of constraints which correspond to the three primary structures found in
SRL/1.5.
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4,2.1. Range Constraint

A range constraint constrains the vafue(s) a siot may have. This constraint is probably the
most common, and is basis of other constraint-directed reasoning systems (Zucker, 1976;
Steele, 1981; Stefik, 1981). Range constraints may be specified as predicates, by
enumeration, or through bounding. They may be unary in form; providing an absoiute
restriction such as the due date must be before the end of the month. They may be n-ary in
form; restricting the value based on information within the schema {e.g., the due date must be
no more than 2 weeks after the start date), or based on information in cther schemata (e.g.,
the due date for the order must follow the due date of their previous order). Examples of
range constraints include: due dates, work-in-process. cost, and production levels.

A constraint on a relation’s range is represented by a range-constraint.

{{ range-constraint
{1s-A constraint

VALUE: }
DOMAIN:
RELATION:
CONSTRAINED-BY: 3]

Figure 4-1: range-constraint Schema

A range-constraint is a constraint whose properties are defined in the rest of the chapter
and summarized in section 4.8. It specifies a DOMAIN schema and RELATION (slot) pair whose
range (value) is to be constrained. The actual value chosen is placed in the VALUE slot
inherited from constraint. The CONSTRAINED-BY slot contains a schema which specifies the
actual constraint. The contents of the CONSTRAINED-BY slot is an and/or combination of
constraints:

{constrained-by-spec> ;! =

{and <constrained-by-spec> *) |
(or {canstrained-by-spec> *) |
(not <constrained-by-spec>) |
<relaxation-spec>

The form of the constraint schema will be provided later in the chapter.

Range constraints may be attached directly t0 the refation (sfot) of the schema to which it
applies. In SRL this is accomplished by placing the constraint directly in the slot's range
facet, replacing SRL's standard range specification. An example of the use of a range
constraint would be the due date of the a turbine blade order.
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{{ order-38
{ INSTANCE order
DUE-DATE:
range: order-38-due-date-constraint}  }}

order-38 has attached to its DUE-DATE slot a facet® called range which specifies the
constraint on its range.

4.2.2. Relation Constraint

A relation constraint defines a relation between domain and range schemata. Examples
include: precedence among operations, e.g., NEXT-OPERATION, and time ordering constraints
between activities, e.g., before and during. The simplist form of a relation constraint is the
slot. The existance of a slot in a schema implies that the schema must and does contain the
slot. For example, if an operation schema contains a WORK-CENTER slot, then it is
constrained to always have the WORK-CENTER relation.

Relation constraints may be more complex. They may specify a predicate or bounds on the
the type of relation. A relation constraint may be specified by the relation-constraint
schema.

{{ relation-constraint
{1s-A constraint }
DOMAIN:

RANGE:
CONSTRAINED-BY: }}

Figure 4-2: relation-constraint Schema

The DOMAIN and RANGE is specified by the constraint. The RELATION is constrained by the
contents of the CONSTRAINED-8Y slot.

Similar to the range-constraint, the relation constraint is attached to the meta-schema of a
schema. This is accomplished by adding to the definitiorn of schema® a
RELATION-CONSTRAINT.

"’A facet is another name for a siot in the meta-schema attached to a siot. !

eAll meta-schemata attached to a schema are of type schema.
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{{ schema
CREATOR:
CREATION-DATE:
RELATION-CONSTRAINT:  }}

For example, an order must have either a CUSTOMER Or COST-CENTER associated with it

{{ order
relation-constraint: owner-constraint  }}

{{ owner-constraint
{ INSTANCE relation-constraint
SCHEMA: order
CONSTRAINED-BY: cust-or-cc }  }}

In the meta-schema attached to the order schema, a relation-constraint specifies a
constraint called cust-or-cc must be satisfied. The available forms of the cust-or-cc
schema is defined in the next section.

4.2.3. Schema Constraint

A range constraint defines the range of a an existing relaticn in a schema. A relation
constraint defines a relation in an existing schema. What has yet to be defined is a constraint
on the schema itself. This can be interpreted as the specification of the set of relations and
ranges a schema must contain. Hence, a schema constraint is a pattern (template) which
defiries the alternative forms a schema may take. In this sense, it is equivalent to the left-hand
side of a rule in a production system language.

A schema constraint i3 specified by adding structure to the contents of the
RELATION-CONSTRAINT slot found in the meta-schema of a schema. This structure defines the
allowable patterns of relations and ranges in the schema. The following grammar defines the
acceptable forms of the range of the RELATION-CONSTRAINT.

{relation-constraint range> :: =
(and <relation-constraint range> *) |
(or <relation-constraint range> *) |
(not <relation-conastraint ranged) |
<{relation spec>

{relation specd ;: =
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<slot> |
<relation-constraint>

The method of constraint representation described here also provides a flexible pattern
matching language. In particular it defines a language for the specification of schema
patterns and the (binary) conditions of a successful match.

The definition of structural constraints is a first but important step towards a theory of
constraint representation. But there is much to be represented before the theory can be
introduced into a production environment. These extensions are the subjects of the
remaining sections.

4.3. Relaxations and Preferences

During the construction of a schedule, it may be found that one or more constraints may not
be satisfiable. For example, the NEXT-OPERATION of the milling-operation is constrained to
be a drilling-operation. At some time during the plant’'s operation, drilling may not be
performable due to lack of supnorting resources (e.g., machine repair, operator sickness,
etc.). Under these circumstances the system should look for alternative ways of achieving the
order goal. This may be accomplished by choosing an alternative to drilling. The selection of
an alternative to a specified constraint is called constraint relaxation.

In general, the variety and possibly conflicting nature of the constraints, may preclude the
existence of a single schedule which satisfies ail of them. How then can a schedule be
chosen which satisfies as many constraints as possible? And if a constraint cannot be
satisfied which relaxation of the constraint can be satisfied?

4.3.1. Relaxation Specification

The first step towards a theory of constraint relaxation is the categorization of relaxation
types. ISIS divides constraints into the following categories:

Relaxation-spec

P

Choice Predicate

Discrote Continuous Preferential Required

Predicate constraints test the value chosen. Choice constraints specify alternatives from
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either a discrete or continuous set. This categorization only specifies that alternatives are
available. It does not describe which alternative is preferred, if given a choice.

To enable ISIS to choose amongst relaxations, a system of utilities is provided. A constraint
may have one of two effects on a schedule. it may determine the admissibility of a schedule.
or it may determine the acceptability of a schedule. Admissibility determines the legality of a
schedule against constraints that cannot be relaxed. Acceptability rates a schedule, allowing
alternatives to be distinguished. The approach taken in ISIS in representing the satisfaction
of a constraint, is to have each constraint impart a utility to a schedule. A constraint may
return a value in the interval [0,2]). 0 implies that the schedule is rejected, 1 implies that the
censtraint is indifferent to the schedule, and 2 implies that the schedule is maximally rated’.

Predicate constraints (figure 4-3) apply a predicate to the object under consideration.

{{ predicate-constraint
{ 1s-A relaxation-spec
RELAXATION-TYPE: predicate }
PREDICATE:
TRUE-UTILITY:
FALSE-UTILITY: }}

Figure 4-3: predicate-constraint Schema

If the predicate is evaluated to be true, then the contents of the TRUE-UTILITY slct is returned,
otherwise the contents of the FALSE-UTILITY slot is returned.

A required-constraint determines the admissibility of a scheduling decision. For
example, the choice of a machine for an operation may be rejected if the machine workhed
size constraint rejects the order because it is too large. Either the machine is admissible for
the order's operation or it is not. The required-constraint specializes the
predicate-constraint by restricting the value of FALSE-UTILITY to zero. In ISIS, a zero utility
resulis in the rejection of the schedule under consideration.

A preferential-constraint determines the acceptability of a scheduling decision by
providing a constant rating if the constraint is satisfied. An example is a machine preference.
The constraint may reflect the shop-floor supervisor's preference for one machine over
another. This preference may have been derived from some cost or quality differential.

Both predicate constraints test a predicate to determine whether the constraint has been
satisfied or not. They differ in their effects. One may reject a schedule, the other just changes
its rating. The former prunes the space of scheduies, the latter prioritizes the space. What
has yet to be considered is the relaxation of constraints. In order to relax a constraint, ISIS
musct know the space of possible relaxations, and the preferences amongst them.

7The choice of [0,2) is a legacy of an earlier version of I1SIS,
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A choice-constraint specifies alternative values (relaxations), and the utility of the
relaxation. The first type of choice constraint is the discrete-constraint (figure 4-4). 1t
specifies the alternatives and their utility. For example, the capacity variable of an inspection
center is dependent upon the number of inspectcrs. The capacity constraint of the center
may specify three inspectors, but it may also specify choices defining the cost of each
additional inspector in the center up to some maximum. The utility indirectly defines the cost
of relaxing the number of inspectors constraint. The number of shifts for the center could be
specified in an analagous manner,

{{ discrete-constraint
{ 1s-A choice-constraint
RELAXATION:
range: (SET (TYPE INSTANCE choice-constraint))
RELAXATION-UTILITY:
RELAXATION-VALUE:
DISCRETE-TYPE!
range: (OR exclusive inclusive)
default: exclusive } }}

Figure 4-4: discrete-constraint Schema

A discrete-constraint extends the choice-constraint by defining a choice:
RELAXATION-VALUE, and its utility: RELAXATION-UTILITY, and one or more alternatives:
RELAXATION. The RELAXATION slot is filled with instances of choice-constraints which
specify alternative discrete vatues and their utititics. The DISCRETE.TYPE slot defines whether
the alternatives are to be exclusive or inclusive. The RELAXATION-UTILITY slot specifies the
utility of the choice, which is then used to fill the constraint's UTILITY for the choice. Note that
the form of the constraint allows relaxations to form a tree of alternatives. An example of a
discrete-constraint is the specification of the number of shifts associated with a particular
machine. Under normal operating procedures, the plant runs with only one shift, adding
another shift results in overtime being paid. Adding another shift is not desirous.

A continuous constraint (figure 4-5) provides a rating of a schedule when it satisfies the
constraint, and aliso provides a continuous rating when the constraint is not met, but relaxed.
Consider the problem of meeting due dates. The due date is a constraint on the delivery date
of the order. But it is not the case that being tardy or early is not admissible. Rather, it is not
preferred. In this case, the due date constraint provides a rating fcr when the date is met, and
aiso when the ship date is early or late.
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{{ continuous-constraint
{ 1s-a choice-constraint
UTILITY.FUNCTION: }  }}

Figure 4-5: continuous-constraint Schema

The continuous-constraint (figure 4-5) has an additional slot, UTILITY-FUNCTION, which
when passed the chosen value, returns the associated utility for the choice. Some constrainis
represented in ISIS as continuous constraints are due dates, start dates, work in process
times, and queue stability.

Preferences among relaxations could also be specified relationally. The relation
more-preferred-than could link two schemata to determine preferences among
alternatives. No utilities need to be specified when using this relation, but could be derived
from the ordering. This introduces two problems. The first is inconsistent preferences.
Preference graphs may form cycles, hence display inconsistency in choice. A second
problem is the lack of a scale against which to compare relaxations of other constraints. In
view of these two problems, ISIS uses absolute utilities.

4.3.2. Relaxation Generation and Testing

The relaxation of a constraint specifies a set of alternatives with an associated utility. With
this information, constraints may play an active role in the generation of the solution space.
That is, constraints may act as generators of states in the search space in addition to testers.

The specification of how states (see section 5.5) may be generated from a constraint is
contained in the GENERATOR slot of the constraint. It contains a function which takes two
parameters: the current search state and the constraint, and generates zero or more
successor states:

{{ constraint
GENERATOR:
TESTER: }}

Figure 4-6: Basic CONSTRAINT Schema

Similarily, the interpretation of a constraint as a test of a state is determined by a function
placed in the TESTER slot of the constraint. It takes the search state and the constraint as
parameters, and returns a utility for the ctate. Conseguently, these two slots proceduralize
the knowledge contained in a constraint for both the generation and testing of states in the
space of schedules. For example, the function in the tester siot for a due date constraint
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would, for each constraint in the CONSTRAINED-BY slot, apply the contents of the
UTILITY-FUNCTION siot to the state’s proposed due date, and combine the utilities according to
the form of the and/or.

4.4. Importance

Constraints are not created equal. Depending on the context, some constraints are more
important than others. For example, a "forced outage" order of blades is a class of orders
with a very short lead time and a due date which must be met at atl costs. A "stock" order is
an order which has no definite due date but should efficiently utilize resources in the factory.
The importance of an individual constraint may differ from order to order. Hence, I1SIS must
provide a method by which the relative importance of constraints may be determined.

The importance of a constraint is specified by a value between 0 and 1. An importance of
zero would imply that the constraint should not be considered, i.e., it is unnecessary. An
importance greater than zero would signify an increasing importance. The actual level of
importance is relative to the importance of the other constraints under consideration. Hence
a constraint’s importance may be directly compared. A constraint’s importance is specified in
i!s IMPORTANCE slot. The importance of a constraint may be derived manually or
automatically. The following defines the methods available in ISIS.

Manual. A simple way of specitying constraint importance is to assign to each constraint a
constant importance which is some number chosen from a rational scale. This importance
could be changed by the user for each order (lot) to be scheduled. This places the burden of
differentiation on the user, requiring their input for each scheduling run.

Partitioning. Orders in W-S fall into definite classes. i.e., forced outage, ship direct, stock,
etc. Experience has shown that each class has a preferred set of constraints to satisfy.
These preferances, in effect, partition the constraint set such that the importance of a
constraint is determined by the partition in which it is a member. Partitioning is implemented
in ISIS by scheduling-goal (see section 4.9.4),

Relational. A third method of diflerentiation relies on relations to specify an ordering
among constraints. To simply say one constraint is more important than another does not
solve the problem of how much more important. The ISIS method of schedule rating requires
a rational, as opposed to an ordinal, system of measurement. Hence, reiative differentiation is
not used.

Since ISIS will be attempting to satisfy many constraints in parallel, some method of
comparing their satisfaction must be provided. A constraint's utility provides a rational
measure of the acceptability of the particular relaxation to ISIS; if a due date constraint's
utility is greater than the utility of a cost constraint, this implies that it has been "better
satisfied”. The measure of importance of a constraint may be viewed as a weight. It may be
combined with a constraint’s utility to form a weighted combination of utilities.
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4.5. interactions

Until now. constraints have been treated as being independent; the selection of a
constraint's value does not depend on nor affect another constraint’'s choice. But consider
the choice of the number of shifts to run a machine. If the machine is a bottleneck, then
reducing the number of shifts will increase possibly an order's work-in-process time and/or
miss its due date. The choice of a budget constraint for the gverall operation of the plant may
affect the choice of shifts available. It is obvious that constraints do affect each other. The
relaxation of one may affect the possible relaxations of others, and there by reduce or
increase their corresponding utilities. Such knowledge would be useful both in pre-selecting
constraint vaiues, and analyzing the resultant utility of a schedule (see section 5.5.3.2).

To aid ISIS in its analysis of schedules, the constrains relation is defined (figure 4-7). This
relation links constraints. A value of pos in the DIRECTION slot denotes that a positive shift in
the utility of the domain constraint will result in a positive shift in the utility of the range
constraint. A value of neg denotes that a positive shift in the utility of the domain constraint
will result in a negative shift in the utility of the range constraint. An unknown direction
implies no direct correlation. Each of these relations has a sensitivity slot which denotes the
sensitivity of the range constraint to a change in the domain constraint (i.e., approximation of
a linear coefficient).

{{ constrains
{1s-A relation

DOMAIN:
‘: range: (type "is-a" "constraint")
‘ RANGE:
range: (type "is-a" "constraint”) }
DIRECTION: ’

range: (or pos neg unknown)
SENSITIVITY: 1

Figure 4-7: constrains Schema

4.6. Obligation

Obligation defines the canditions underwhich a particular constraint must be considered
and possibly satisfied. Some forms of obligation are obvious such as the context sensitivity of
a constraint. Other forms of obligation are more subtle and did not become apparent until
field implementation of ISIS became imminent. The following defines various types of
obligation a constraint may specify.
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4.6.1. Duration

8 Organizations are organic; they change over time. Hence constraints may only have a
limited time span for which they are applicable. This specification of time can be absolute, or
it can be defined relative to some other span of time. An example of the latter is the
specification that a constraint is applicable only during the execution of an activity such as an
operation, or before or after it. To represent the concept of absolute and relative time
specification, the time representation described by Allen (1982) is used. It is interval based
and contains the following basic relations: before, overlap, during, meet, and time-equal (see
section 3.4.2). An example of the during relation is as follows:

{{ need-box-gauge
{ INSTANCE possess
POSSESSION: box-gauge
DURING: airfoil-inspection } B

Figure 4-8: need-box-gauge Schema

Constraints may now be linked to activities which span a time interval by means of these
relations. Constraints may also be directly linked to a time interval in order specify an explicit
time during which they should be considered. See (Smith, 1983) for a complete description of
time-based selection of constraints.

4.6.2. Consistency

The use of ISIS in a factory may result in the same constraint being supplied by more than
one source. Consider the possibility that both the marketing representative and the scheduler
have access to ISIS. Each may specify a possibly different due date in line with their own
perception of "reality". What should I1SIS do when faced with inccnsistent constraints (as
opposed to conflicting)? In this case it could determine which constraint is to be ignored
either by asking one of the users to yield, or by referring to other information. One approach
to the latter is to generate an authority model (Meehan, 1981). This mode! would specity the
authority relations between people and departments which exist within the corporation, and
whose specifications of constraints have precedence over others. These relations must also
specify precedence among automatically generated constraints, and those manually
generated.

To support this, ISIS must first recognize that there cannot exist more than one constraint
for a range, relation, or schema. This is accomplished by means of the CONSISTENCY slot in
each type constraint. At present the slot may have two values: exclusive or inclusive. An

oMuch of this subgection evolved during discussions with the ISIS research group: Brad Allen, Stephen Smith, and
Gary Strohm,
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exclusive value signifies that there can only be a single constraint, and if there is more than
one, the system must determine which to ignore.

The second step toward removing inconsistencies is the recording of adequate information
with which to make decisions. Each constraint may have meta-information which records its
creator. This is easily handled by the meta-schema.

4.6.3. Residency

A third type of obligation is residency. Simply through attachment of a constraint to an
object or process, ISIS is obliged to consider the constraint whenever it uses the object
and/or process in a schedule. Attachment is accomplished by either adding a CONSTRAINT
slot 10 a schema and filling it with one or more constraints, or elatorating a CONSTRAINT slot
into one or more types of constraints (e.g., shift, capacity).

4.6.4. Context

Duration, authority, and residency are part of the basic specification of the context
underwhich a constraint may be applicable. Other obligation types remain to be determined
and their relations constructed. In lieu of further analysis, a catch-all CONTEXT slot is
specifiable in a constraint. The contents of this slot is a lisp function which takes two
paramenters, the search state and the constraint. The function must return non nil in order
for the constraint to be used.

4.6.5. Obligation Resolution

The resolution of the set of constraints to be evaluated during the scheduling process is
defined in the next chapter. Once the ISIS search algorithm has determined the initial set, the
constraints are filtered according to the following tests:

e remove all constraints whose time specification does not coincide with the
current time,

« remove all constraints whose contexts evaluate to nil,

e partition constraints into inconsistency sets and reduce to single constraint in
each set according to authority/preference relations:

1. the creators of the inconsistent constraints are retrieved from the attached
meta-schemata,

2. constraints without creators are ignored,

3. the has-authority-over reiation is followed to determine the creator with
the greatest authority, and the corresponding constraint is returned.
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4.7. Generation

With the definition of constraints complete, it is time to discuss their generation. Until now,
it has been assumed that constraints exist statically in the model; their source being the
system user. Instead, constraints may be generated dynamically. Consider the problem of a
milling operation which transtorms the shape of metal. The final mass of the metal may be a
function of the initial mass, and the operation. Hence, the constraints on the the metal's final
mass must be determined dynamicaily; the operation does not produce a value for the metal's
mass, but one or more constraints.

At this point it is important to differentiate among a classical algorithmic approach to
problem solving, and a constraint-directed approach. !n the former, algorithms/functions
would produce a single value for the attribute of a state. In the latter, constraints are
produced, and the attribute's value must be deduced from them. These approaches are
equivalent only when the constraint limits choice to a single value.

Existing approaches to the dynamic generation of constraints are either highly specific to
the domain, for example the CONSTRAINTS system (Steele, 1980) produces a constraint on
the nth pin of a circuit, given constraints on the n-1 pins. and the definition of the circuit. Or
more general to the point of being simple production rules (McDermott & Steele, 1981:
Stanfill, 1981).

The approach taken in ISIS is somewhere between the two. The generatior of constraints
can be embedded in the relational model of the domain. Consider the milling operation again.
The performance of the operation causes a state in which the metal's mass is reduced. In
ISIS, the constraint generator would be attached direcily to the cause relation linking the
milling operation to its post-state. Hence, when the operation (act) is perfcrmed, the system is
not only able to deduce what states are caused, but any constraints on those states. The
approach may be extended by allowing constraint generators to be attached to any relation,

The representation of a relation is amended to include constraint generators:

{{ relation
DOMAIN:
RANGE:

CONSTRAINT-GENERATOR:  }}
Figure 4-9: relation Schema with Constraint Generator
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4.8. The Constraint Schema

The following is the general form of a constraint, from which the others are derived:

{{ constraint
VALUE:
uTILITY!

CONTEXT:
IMPORTANCE!
INTERACTION:
DURATION:
CONSISTENCY:

GENERATOR:
TESTER: B

[ _ Figure 4-10: General constraint Schiema

In the VALUE slot is placed the value chosen for the constraint. In the UTILITY slot is placed
the utility of the value chosen. Each of the other slots refer to the basic issues raised in the
preceding sections. They are either used directly or elaborated in some manner. For
example. the IMPORTANCE slot is filled manually and/or by interpreting scheduiing goals. The
DURATION slot is elaborated into relative time relations, or filled with a time span.

The next section provides examples of different types of constraints.

4.9. Examples

4.9.1. Predicate Range Constraint

Consider a constraint that restricts the length of a turbine tlade that can be milled on a
machine to less that 28.5 inches. This can be represented by the schema
product-length-requirement which is a combination of a required-constraint and a
binary-attribute-constraint (see section 4.11);
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{{ product-length-requirement
{1s-A range-constraint
DURING: airfoil-operation
CONSTRAINS: airfoil-machine-preference
direction: neg

DOMAIN:
range: (type “is-a” "blade”)

RELATION: foil-length

CONSTRAINED-BY: product-length-constraint } }}

Figure 4-11: product-length-requirement Schema

{{ product-length-constraint
CONSTRAINT-OF: product-length-requirement

{ INSTANCE required-constraint
RELAXATION-TYPE: required
TRUE-UTILITY: 1.2
PREDICATE: product-length-predicate}  }}

Figure 4-12: product-length-constraint Schema

{{ product-length-predicate
PREDICATE-OF: product-length.constraint

{INSTANCE binary-attribute-predicate
RANGE-2: 28.5
PREDICATE:lessp } })

Figure 4-13: product-length-predicate Schema

product-length-requirement specifies that the foil-length of a blade is being constrained.
it is obligated to being used during an airfoil-operation, and it negatively affects the airtoil-
machine-preference  constraint. The actual constraint is specified in
product-length-constraint. If the constraint is satisfied then the utility returned will be 1.2,
otherwise 0. The predicate of the requirement is specified by the product-length-predicate
It specifies that any blade must have a foil-length less than 28.5 units. One potential problem
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in constructing this consiraint is enabling the predicate to refer to slots in the root constraint
(i.e., product-length-requirement). You will notice that the predicate schema is linked to the
requirement schema via a PREDICATE-OF relation (inverse of predicate), and that the
requirement schema is linked to the range constraint by a CONSTRAINT-OF relation {inverse of
constrained-by). Each of these relations allow the inheritance of slots and values. Hence the
product-length-predicate inherits the DOMAIN, and RELATION slots from
product-length-requirement.

The product-'lenglh-requirement is not attached to the FOIL-LENGTH sict of all products,
but is attached instead to the airfoil-operation schema (i.e., contained in the constraint
slot). ltis up to ISIS to retrieve the constraint from the operation’s CONSTRAINT slot, and apply
its tester function to the search state and constraint. The tester retrieves the blade being
scheduled and places it in the domain siot, and applies the contents of the ApPpLY siot in the
predicate to its schema name. This is described further in the next chapter.

4.9.2. Discrete Range Constraint

Another type of constraint often found in manufacturing organizations is the specification of
shifts. A shift defines the time that a work center is availabe for work. Historically, it has been
discrete, specifying one, two, or three shifts during a work day. In addition, the number of
shifts on a week end may differ from that during a week day. Therefore, a shift constraint
should specify what the normal available shifts are, what the relaxations are, and the period
during which the shift constraint should be interpreted.

A shift specification may be specified as a discrete-constraint (figure 4-14). The
CHONSISTENCY of the slot is exclusive, spzcifying that only one shift constraint may exist for the
slot. No alternatives are specified at this point.
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{{ shift-constraint
{ 1s-a range-constraint
DOMAIN:
range: (or (TYPE is-a machine) (TYPE is-a work-center))
RELATION: shift } }}

Figure 4-14: shift-constraint Schema

{{ shift-constraint-spec
{is-a discrete-constraint
CONSISTENCY: exclusive } 1}

Figure 4-15: shift-constraint-spec Schema.

{{ shitt
START-TIME:
END-TIME:
WOQRK-WEEK: }}

Figure 4-16: shift Schema

An example of a shift constraint is that specified for a wmi1 machine (figure 4-17).

{{ wmf1-shift
{ 15-A shift-constraint
DOMAIN: wmf1
RELATION: shift
CONSTRAINED-BY: wmf1-ghift-constraint '} }}

Figure 4-17: wmf1-shift Schema

The range ccnstraint specifies the domain of the constraint and reiation. That is, the
constraint affects the SHIFT slot of the wmf1. The contents of the CONSTRAINED-3Y siot is the

name of the constraint: wmf1-shift-constraint (figure 4-18). It gescribes a start-time,
end-time, and day for the shift.

CONSTRAINTS




PAGE 70

{{ wmf1-shift-constraint
{ INSTANCE shift-constraint
RELAXATION-VALUE: {{ INSTANCE shift
START-TIME: 8:00
END-TIME: 16:00
WORK-WEEK: (OR monday tuesday wednesday
thursday friday) 3]

RELAXATION-UTILITY: 2
RELAXATION: wmf1-shift-relaxation } }}

Figure 4-18: wmf1-shift-constraint Schema

The shift constraint is not a schema constraint. Each relaxation completely specifies the
start-time, end-time, and work week. They cannot be relaxed individually. The contents of the
RELAXATION slot specify another shift, wmf1-shift-relaxation, to be used in addition to the
first constraint (the DISCRETE-TYPE of the constraint is inclusive).

{{ wmt1-shift-relaxation
{ INSTANCE shift-constraint
RELAXATION-VALUE: {{ INSTANCE shift
START-TIME: 16:00

END-TIME: 24:00
WORK-WEEK: (OR monday tuesday wednesday
thursday friday) 1
RELAXATION-UTILITY: 1.2
DISCRETE-TYPE: inclusive }}

Figure 4-19: wmf1-shift-relaxation Schema

The constraint is interpreted by taking the value of the TESTER slot from wmt1-shift (not
shown) and applying it to the pair (<state> wmf1-shift). The tester will retrieve the discrete
constraint and find the value which matches the value under consideration (i.e., specified

inthe state) and return the relaxation utiljty.

4.9.3. Continuous Range Constraint

A due-date-constraint is reprasented as a continuous range constraint.
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{{ due-date-constraint

{ 1s-a range-constraint
DOMAIN:
: ) range: {type "is-a" "lot")
i RELATION: due-date
‘ CONSTRAINED-BY:
range: (type "“is-a" "due-date-constraint”) }

TESTER: due-date-tester
PRIORITY-CLASS: }}

Figure 4-20: due-date-constraint Schema

{{ d¢ue-date-constraint-spec
{ 1s-A continuous-constraint
CONSISTENCY: exclusive
! UTILITY-FUNCTION: interpolate )
4 PIECE-WISE-LINEAR-UTILITY: }}

Figure 4-21: due-date-constraint-spec Schema

The basic due-date-constraint is a continuous value constraint which constrains tnhe due-
date slot of a lot. The choice of a due-date has a utility specified by the
PIECE-WISE-LINEAR-UTILITY. The utility is specified by (shipping-lateness utility) pairs. An
example of its use is a due date for forced ocutage orders. The tester for
due-date-constraints takes the search state and the constraint as parameters, retrieves the -
due date being considered int the state, or predicts one, and applies the value of the utility

function siot to the due date. The utility function uses the PIECE-WISE-LINER-UTILITY value to
interpolate and return a utility.

{{ fo-due-date
{1s-A due-date-constraint
PRIORITY-CLASS: forced-outage
CONSTRAINED-BY: {{ INSTANCE due-date-constraint
PIECE-WISE-LINEAR-UTILITY: ({0 2) (7 0.2)) B
} B

¢ i gt mn

fo-due-date specities that the utility of the due date chosen is 2 if it less than or equal to the
the requested dus date. It is linearly decreasing to 0.2 if it greater than O days late and less
than 7. And ig 0.2 if greater than 7 days late.
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4.9.4, Meta-Constraints: Importance Partitioning

A variety of constraints exist which are used to select the type of search to be performed,
and the knowledge to be used. They are called meta-constraints. Examples of meta-
constraints include:

» selecting the direction of the beam search based on the priority class of the order,
o selecting the operators to perform the search,

o resolving which constraints to use to rate a state in the search space.

One such meta-constraini is the scheduling-goal. it defines for each type of order the
relative importance of constraints. During the scheduling process, ISIS. retrieves the
scheduling-goal for the order being scheduled and derives the importance of constraints
under consideration. Hence, SIS dynamically determines a constraint’'s IMPORTANCE while
searching.

{{ scheduling-goal
{ 1s-a constraint
DOMAIN: search-state  }
PRIORITY-CLASS:;
PARTITION-IMPORTANCE: }}

Figure 4-22: scheduling-goal Schema

The scheduling-goal constraint applies to any state generated by ISIS in it search for a
schedule.

The partition-importance schema defines an importance for a schema or class of
schemata. Given a set of constraints, ISIS partitions the constraints according to the
partition-importance specifications (<partition-spec> is an AND/OR/NOT specification of a
partition). And divides the partition’s importance equally among the constraints in the
partition.

{{ partition-importance
PARTITION-SPEC: {partition-spec>
IMPORTANCE: })

{partition-spec> ::= <{schema>
| {OR <partition-spec> *)
| (AND <partition-spec>*)
| (NOT <partition-spec>*)
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An example of a goal in ISIS is a Forced-Outage-Sched-Goa! (figure 4-23).

{{ Forced-Outage-Sched-Goal
{ INSTANCE scheduling-goal
PRIORITY-CLASS: forced-outage
PARTITION-IMPORTANCE: fo-partition other-partition }  }}

{{ fo-partition
{ INSTANCE partition-importance
PARTITION-SPEC: (OR lead-time due-date)
IMPORTANCE: 0.9 } B

{{ other-partition
{ INSTANCE partition-importance
CONSTRAINT: (NOT (OR lead-time due-date))
IMPORTANCE: 0.1 } B

Figure 4-23: Forced Outage Scheduling Goal

In this goal, all due-date and lead-time constraints are in the fo-partition which splits a
importance of 0.9. The other-partition covers all the other constraints not in the
to-partition with a combined importance of 0.1.

The interpretation of scheduling goals is "hard-wired" into the resource analysis level's
beam search algorithm. A general approach to the interpretation of meta-constraints has not
been investigated.

4.10. Conclusion

This chapter introduced some of the principles of constraint-directed reasoning. In
particular, it defined the types of knowfedge reguired to reason about constraints, and
proposed a representation. In ISIS, "constraint-directed search” is more than a phrase. It
provides a shift in perspective. Instead of viewing the creation of a shop model as object-
attribute-value triples, the focus shifts to specifying object. attribute-constraint triples. Values
are simply the result of evaluating the constraint or constraints,

Constraint-directed search is also a theory of problem solving. More specifically, it is an
extension of heuristic search paradigm. Where heuristic search specifies a state-space
approach to problem-solving, constraint-directed search extends this theory by providing
meta-information about the problem and its search space. Constraints may:

o specify possible operators. For example, a next operalion constraint can be an
operator.

¢ evaluate states. The utility associated with a constraint and its relaxations can bs
used to evaluate the choices made in a state.
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o stratify the search space. interactions among constraints my define a structuring
of the search space. .

e structure our knowledge about the problem. Obligation and relaxation provide
additional structure as to when and where to use this knowledge.

Much of the problem in performing problem-solving is the selection of state description and
operators. That is, the determining what the structure of the search space will be. A poor
choice of either may result in infinite search. Constraints provide a solution to this problem by
explicitly representing the dimensions tc be searched (i.e.. constraints and their relaxations),
and preferences among them. With this information, it may be possible to construct a system
which can structure the search space and select the operators to search it. This issue is
explored in the next chapter.

4.11. Appendix: Predicate Specification

This appendix axamines how predicate constraints may be specified in SRL/1.5. The
approach taken is a combination of declarative and procedural representations. That is, the
description of the constraint is defined by slots in a schema, and the application or testing of
the constraint is pertormed by procedural interpretation. For example, the concept of a
function can be represented as follows:

{{ function
PARAMETER:
BODY:
APPLY: (lambda (schema)
{apply (valueg1? schema "body") (list (valueg1? schema "parameter")))) }}

Figure 4-24: Function Schema

The contents of the APPLY slot provides the procedural interpretation of the function
schema. 1t simply applies the contents of the BODY slot to the contents of the PARAMETER
siot.?

it follows that constraints which have a procedural interpretation such as enabling and
preference constraints can be represented in this fashion. For example, a
binary-attribute-predicate may be represented as follows:

‘Tho function valueg1? returns the first vaiue in the slot. But if the slot is empty, it returns the name of the slot.
The rationale for this is a result of the user's ability to elaborate any slot into new siots, in SRL. 8y elaboration, the
user may redefine the BooY siot into more detailed slots until the level of spacitication reaches lisp functions. At this
point tha slot name is equivaient to the value of tha siot,
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{{ binary-attribute-predicate
DOMAIN:
RELATION:
RANGE:
RANGE-2:
PREDICATE:
APPLY: (lambda (bap)

; place in the range slot the value defined in domain.range
(valuec1 bap "range"
(valueg1 (valueg1? bap "domain"} (valueg1? bap "relation")))

; apply the predicate to the two ranges
(apply (valueg1? bap "predicate")
(list (valueg1? bap "range") {valueg1? bap "range-2")))) 3]

[N

n ) Figure 4-25: binary-attribute-predicate

The procedural interpretation takes the name of the schema as its only parameter (bap). It
assumes that the schema has the DOMAIN, RELATION, and RANGE-2 slots filled. It fills the RANGE
slot from the designated DOMAIN and RELATION. It then applies the PREDICATE to both values.
Other predicates can be defined in a similar manner. This allows ISIS to "execute" any
predicate in a predicate-constraint in schema form.

—— e
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Chapter 5
Constraint-Directed Scheduling

Summary

The goal of ISIS is to construct schedules which satisfy as many constraints as
possible in near realtime. To achieve this, ISIS uses constraints to bound, guide
and analyze the scheduling/search process. The ISIS system performs a
hierarchical, constraint-directed search in the space of alternative schedules.
Level 1 selects an order to be scheduled according to a prioritization algcrithm
based on the category of the order, and its due date. Level 2 performs a current
capacity analysis of the plant. it determines the earliest start time and latest finish
time for each operation of the selected order, as bounded by the order's start and
due date. The times generated at this level are codified as constraints which are
passed to level 3. These operation time bound constraints constrain the start and
end times of operations at the next level. Level 3 performs a detailed scheduling of
alf resources necessary to produce the selected order. Pre-search analysis begins
by examining the constraints associated with the order to determine the
scheduling direction (forward vs backward), whether any additional constraints
should be created (e.g., due dates, work-in-process), and the search operators
which will generate the search space. A beam search is then performed using the
selected search operators. The beam search sequences the application of
operators. Each application of an operator generates another "ply" in the search
space. At each ply only the "n" highest rated states are selected for extension to
the next ply. The moest often selected operators generate alternative operations,
machines, and queue positions for an order in the plant. Starting with a null
schedule, alternative partial schedules are generated either forward from the start
date or backward from the due date. An operation operator generates alternative
states which represent alternative operations in either the forward or backward
direction. Once the operation is known for a state, other operators extend the
search by creating new states which bind the machine and/or the execution time
of the operation. A variety of alternatives exist for each type of operator. For
example, two operators have been tested for choosing the execution time of an
operation. The "eager reserver” operator chooses the earliest possible

. reservation for the operation's required resources, and the "wait and see"
operator tentatively reserves as much time as available, leaving the final decision
to level 4. This enables the adjustment of reservations in order to reduce work in
process time. Aiternative resources are generated (e.g., tools, materials, etc.) by

! other operators. Each state in the search space is rated by the set of constraints
; found (resolved) to be relevant to the state and its ancestors. Constraints defined
to be in the set are those which are attached to any resource (e.g., machine, tool,
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order, etc.) specified by the state. Each constraint assigns a utility Letween 0 and
2 to a state; zero signifies that the state is not admissibie, 1 signifies indifterence, 2
maximal support. The rating of a state with multiple constraints is the weighted (by
importance) average of the constituent constraints,. The importance of a
constraint is defined statically or derived dynamically according to goal
information. Once a set of candidate schedules have been generated, a rule-
based post search analysis examines the candidates to determine if one is
acceptable. Currently, any schedule with a rating greater than one is accepted. If
no acceptable orders are found, then diagnosis is performed. First, the schedules
are examined to determine a type of scheduling error. The error is then fed back
to pre-analysis in order to select new operators which are used to re-schedule the
same order. The diagnosis of poor solutions caused by constraint satisfaction
decisions made at another level can be performed by analyzing the interaction
relations linking constraints. A poor constraint decision at a higher level can be
determined by the utilities of constraints affected by it at a lower level, and an
alternative value chosen. Level 3 outputs reservation time bounds for each
resource required for the operations in the chosen schedule. Leve! 4 selects the
actual reservations for the resources required by the selected operations which
minimize the work-in-process time.

The scheduling of ISIS is also reactive. The invalidation of reservations by
actions such as machine breakdowns or other orders taking too long on a
machine, results in a minimal re-scheduling of only the affected orders, while
attempting to maintain previous reservations. 18IS’s scheduling is also suggestive.
If constraints cannot be met, it attempts to generate a schedule which satisfies as
many constraints as possible. For example, if the due date of an order cannot be
met by backwards scheduling, it attempts to schedule in the forward direction and
suggests an alternative due date.

5.1. Introduction

Job-shop scheduling is a constraint-directed reasoning task. This has been determined by
an analysis of the tasks pertormed by schedulers. How then must machine problem solving be
organized in order to construct schedules which satisfy the ccnstraints? A strawman
proposai is to use the british museum algorithm approach: enumerate the sclution space of
possible schedules and choose the best by using constraints as rating functions. Regrettably,
scheduling is a classic example cf an NP-hard problem which grows exponentially along each
dimension such as operations, machines, tools, personne!, orders, etc. By reducing the
number of dimensions the size of the problem decreases, but just considering n orders on an
m machine process sequence results in (n!)™ different sequences. And this ignores time
assignments with gaps. The solution lies not just in how to search the "solution space”, but
in finding the right prcblem in the "problem space". Selecting the "right problem" implies
bounding the dimensions and size of the solution space.

The first step towards bounding the problem would be to analyze the complexity of the
search space. Meta-planning is one possible approach (Hayes-Roth & Hayes-Roth, 1979;
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Wilensky, 1980: Stefik, 1981b). Given the goal of a "shipped order”, a meta-planning system
should first decide how it can be achieved. For example, there is an operation which has its
caused state restricted to a "shipped order”. The meta-planner would examine the operation
to identify slots which enable it. In the finish-&-test operation (figure 5-1), possession of a
NDT-MACHINE and ndt-fixture enable the operation to be perform=d. In addition,
airfoil-machining is act-coupled with finish-&-test, hence it must be pertormed before
finish-&-test. The meta-planner would note that the latter constraint will require that
planning be done to determine an operation sequence. It would also note that the former
constraints require scheduling (time assignments) of resources to be performed.

{{ tinish-&-test
{ 1s-A operation
CAUSE:
range: (TYPE "is-a” "shipped order")
ENABLED-BY: "f&t-resources”
ACT-COUPLE « INV: "airfoil-machining” }  }}

Figure 5-1: finish-&-test Schema

{{ t&t-resources
{ INSTANCE and
SUB-STATE: "pcssess-ndt” "possess-ndt-fixture" }  }}

{{ possess-ndt
{ INSTANCE possess
POSSESSION:ndt } }}

{{ possess-ndt-fixture
{ INSTANCE possess
POSSESSION: ndt-fixture } }}

{{ airtoil-machining
{ INSTANCE operation
ACTCOUPLE: "finish-&-test" }  }}

in this initial meta-planning or problem generation stage, it-was found that planning in an
operation space and scheduling in muitiple resource spaces must be performed. Now that
the extent of the problem space has been marked off, states in the space must be generated,
keeping in mind that a problem definition must be found of tractable complexity.

One approach to reducing the cdmplexity of the search space is to recognize that
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scheduling has multiple foci. That each non-perishable non-infinite resource, can be viewed
as a separate scheduling focus with its own constraints to be considered and utilities to be
maximized. Of the scheduling systems surveyed in the market place, it was found that each
was a machine scheduling system. The focus being machine-operation assignments with bill
of materials (i.e., tooling, material, and other requirements} exploded for each operation.
None attempt to optimize tools or other resource assignments.

We now encounter the problem cf whether to totally decompose scheduling into separate
problems for each resource. And if so how are their results to be communicated to each
other? Or should the scheduling of all resources be collapsed into a single search space?

Since complexity does not allow the merging of all scheduling foci into a single search
space, it remains to choose how the problem is to be decomposed and what the operators are
that elaborate the search space. in order to determine the dimensions along which to search
the space of partial schedules, scheduling goals and constraints must be re-examined. A
primary goal cf the factory is to produce the product and to meet an order's due date. In
order to produce a product, a process routing must be chosen. The choice of an operation
directly aifects all time related constraints since processing time is directly related to the
operation. The choice of an operation restricts the choice of machine, and in turn the choice
of queue position. And the choice of a machine and queue position for the machine also
directly affect time-related constraints. So there are three dimensions along which the search
space can be elaborated: operation, machine, queue position. Upon further examination,
each of the resources have their availability constrained. For example, the number of SHIFTS
constrains how fong the machine is run each day. Each of these constraints may alsc define
dimensions in the search space.

Should the search be restricted to the operation, machine, and queue position dimensions
when the choice of the numher of shifts available on a machine has a large aftect on time-
related constraints? In this case the number of shifts is a hard constraint. The degree of
hardness of a constraint is related to the ccost of relaxing it. Normally, the number of shifts
associated with a machine or cost center is set in advance, and the addition of another shift is
quite costly. It is not a decision that is normaily considered except in certain situations.
Hence, choosing the dimension along which partial schedules are elaborated is determined
by its relevance to goals, primary constraints, and the cost of relaxation.

Once the problem has been defined, the method of search must be determined. As
described earlier, the number of possible sequences of orders on a set of machines is very
large. Hence, the search method is crucial.

Whenever search is to be performed, the first problem is to decide where to start. Search
problems can be distinguished by whether they are anchored or not. Anchoring implies that
there are one or more points in the search space that are known to the problem solver. These
anchors can be used to guide or focus the search. Actuaily, anchors are instances of of
meta-constraints, i.e., a search constraint. An anchor constrains the search process.
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A problem with only an initial state is called a single anchor problem. Only one state is
known. The goal state may not be unique, but can be recognized. The search begins at this
anchor state and spreads. How the search spreads can be categorized in two ways: rated and
blind. A rated search assumes that each state can be rated, and ordered by rating. Examples
of rated searches are best-first, A~ {Nilsson, 1971), B’ (Beriiner, 1979), and Beam (Lowerre,
1976). A blind search assumes that states cannot be ditferentiated other than by order of
elaboration. Two such searches are breadth and depth searches.

Problems can have more than one anchor. A two anchor problem might have both an initial
state and a goal state. The search is for a path between the two states Means-end analysis
(MEA) (Newell, 1969) is one technique that finds paths between anchors, and the parallel
search of NOAH (Sacerdoti, 1975) is another. The existence of more than two anchors
implies that there may be more than one initial or goal state, or that states along the solution
path are also known. In the latter case, MEA can be used, or the island-driving technique of
Hearsay-ll (Erman et al., 1980) and HWIM (Woods et al., 1976).

Up to this point, it has been assumed that anchors are well defined. That they are points in
the search space to be used or avoided, implying that they are discrete. But actually anchors
may form a continuum. Obviously, if anchors are just constraints on how to search, then they
should follow the constraint categorizations in section 1.1.1.

Search may be directed, hence reducing complexity, by exploiting structure in the search
space. Two types of structure have been discerned. The first is the stratification of the
solution space. That is, the solution space can be civided into levels. Each level can be
searched separately or in some connected fashion. The Hearsay-ll levels of representation is
a dependency stratification where the higher levels (e.g., syntax) restrict the lower levels (e.g.,
lexical, phonemic). On the other hand, ABSTRIPS (Sacerdoti, 1974) ctratified the conditions
of its operators by partitioning the variables into major factor sets. Strata can be searched
top-down, bottom-up, or opportunistically.

The second type of stratification is to decompose the space into separate sub-spaces that
can be searched separately.

In our analysis of the praoblem, the search dimensions were narrowed to operations,
machines, and queue positions. These dimensions formed a dependency stratification of the
search space (figure 5-2). The space was single anchored at either a start date or a du:e date
in conjunction with a first or last operation, and each state was rated (by the constraints). The
question then was what search technique shouid be used?

The number of schedules elaborated can be reduced by taking a top-down approach to
searching the machine space. This means that the operation space vould first be searched
to find a "reasonable” sequence of operations. Then the machine space would be searched
along the direction imposed by the chosen operation sequence. Finally, the queue position
space would be searched for only the machines in the chosen machine sequence, An’
alternative search method would be to collapse the spaces into one and search each
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Operation Space

Machine Space

Queue Position Space

Figure 5-2: Machine Scheduling Search Space

dimension in paraliel. The choice of approach is dependent upon whether choices at a higher
level in the top-down approach would prune better partial schedules from the search space.
In this case, the top-down approach would generate inadequate solutions which would result
in back-tracking. In other words, the stratification does not exhibit complete dominance:

Definition: Rated Space A search space where each state (node) has a rational numeric
rating assigned to it.

Definition: Stratified, Rated Space A rated search space in which the states are
partitioned into levels. States at one level can be related (linked) to states
{children) at the immediate level below it. The rating of a state is the sum
of its own rating and the ratings of its children.

Deftinition: Complete Dominance A l2vel in a stratified, rated, search space completely
dominates a lower level when the sum of ratings of nodes along any
search path in the lower level is less than any rating for any node in the
higher level.

Theorem: A rated search space where each level completely dominates the levels below will
return the optimal path if searched top-down.

Corollary: A top-down search of a stratified, rated, search space will have the same results
as a complete search of the collapsed space if and only if the space is
completely dominated.

The first version of ISIS constructed was composed of two levels:

1. lot selection,

2. resource analysis.

Lot selection chose a single lot and handed it to resource analysis. Resource analysis
performed a beam search to construct detailed schedules for all resources used in next-
operation, choose-machine, and choose-queue-pos. Schedules constructed in this manner

were rather poor due to horizon problems ™,

10800 chapter 6 for a complete analysis.
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Based on experience with the first version, a second version of ISIS was constructed which
was composed of three levels:

1. lot selection,
2. capacity analysis,

3. resource analysis.

The capacity analysis level generated time bounds for the operations required to build a lot. It
ignored much of the information used in resource analysis, and considered only operations,
machines, and available capacity. These time bounds were then communicated as
constraints to the resource analysis level. The capacity analysis level introduced a
hierarchical reasoning capability similar to that suggested by Simon (1962) and implemented
by Sacerdoti (1974). While the results of this level were good, i.e., most constraints were
satisfied, there were still problems with the satisfaction of the work in process constraint.
A third version of ISIS was then constructed which included a fourth level:

1. lot selection,
2. capacity analysis,
3. resource analysis,

4. reservation selection.

Instead of having resource analysis make reservations for resources such as machines and
tools, it generated time bounds on when the resources should be made available to perform
an operaticn. The tourth level, reservation selection, then looked at all the time bounds and
made reservations for the resources which reduced the work in process time for the order.

In the rest of this chapter, the architecture of the final version of {SIS is described.

5.2.1S1S Problem-Solving Architecture Overview

The version of ISIS discussed in the rest of this chapter is ISIS-Il. [SIS-Il employs a
hierarchical constraint-directed search to construct schedules. The search space is
composed of four dimensions:

1. Scheduling method,
2. Analysis step,
3. Time, and

4. Rating.

The first dimension, scheduiing, has four leveis:

CONSTRAINT-DIRECTED SCHEDULING
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1: LOT SELECTION
2: CAPACITY ANALYSIS
3: RESOURCE ANALYSIS

4: RESERVATION SELECTION

Lots are scheduled sequentiafly'’. The next Iot to be scheduled is selected by the level 1
analysis, based on lot status, due date information, and priority class. This lot selection level
searches the schedulable lot space, assigning to each lot a start time, finish time, and priority
rating. A selected lot is then scheduled at the capacity level based on available machine
capacity, and the lot's operation graph. Level 2 generates a graph of states, where each state
represents a separate operation with an earliest start time and a latest finish time'?. The
output of the leve! 2 analysis is a set of constraints which bound the times that each operation
for the lot may be performed. The resource analysis level performs an anchored beam
search™. 1t generates time bounds on the required resources by using afl available
constraints, both local to the level and those generated at the capacity fevel. Leve! 3’s search
states represent alternative operations, machines, and operation times for each step in the
lot’s production process. Level 3 outputs to level 4 a set of time bounds for each resource
required for the lot's operations. Level 4 then selects a reservation within the time bounds
which reduce work in process time.

The second dimersion, analysis, impiements the "theory” of constraint-directed search.
Each scheduling level is divided into three steps: pre-search analysis, search, and post-
search analysis (figure 5-3). The purpose of pre-analysis is to analyze the probiem at hand to
determine how to bound the search space. If meta-planning module were available, as
descriqu in section 5.1, it could be determined which were the "major" constraints which
would affect search at a particular level. These major constraints could act as operators, e.g,
next-operation constraint, hence bounding the space of possible schedules. Such a module
was not constructed. Instead, a rule based was devised and implemented in OPSS (Forgy,
1979) which represented an expert systems approach to pre-search analysis. For example,
there is a rule-base in the pre-analysis of the resource analysis level which selects the search
operators, the direction of search, and may add additional constraints to the search.

11Tho intent was to reduce the complexity of the search, enabling the monitoring of a single order as it "weaves"
its way through the plant. Parailel scheduling is being investigated in iS!S-Hl.

1"’Tho use of aiternative operation paths was required in order to utilize the operational flexibility available in the
plant.

311e investigation of opportunictic search was postponed to ISIS-Il. 1t was anticipated that other “levels of
analysis” (e.9., capacity analysis) couid detect islands of certainty and guide the resource analysis around or through
them.
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The second step of analysis performs the search with the operators and other information
provided by the pre-analysis step. It uses constraints selected in pre-analysis and found
during the search to rate the generated states. These constraints guide the search by pruning
and/or reducing the interestingness of states in the search space.

The third step is post analysis. The purpose of this step is to use constraints to determine
whether the results of the second step are acceptable. The final states of the search step are
rated according to how well their constraints are satisfied. if the ratings are unacceptable, the
constraints can be examined to determine which are not satisfied, and corrective action
taken. For example, feedback may be provided to pre-analysis to alter the search space. The
implementation of this step is also rule based, with a more general constraint-directed
diagnosis method suggested.

SEARCH MANAGER

-operator
selection

-constraint
binding

Figure 5-3: Phases of Reasoning at a Level

The third dimension, time, orders each state at each search level, according to the time of
its expected implementation.

The fourth dimension, rating, orders each state in the search space according to its utility
rating.

It would appear that I1SIS-II's approach to scheduling utilizes an architecture which is
quickly becoming a standard in Al (e.g., Hearsay-Il, SU/x, SU/p, Molgen). What sets ISIS-Il's
approach apart, is that decisions at a higher level do not restrict decisions at a lower level, but
constrain them. The difference is subtle. Decisions at higher ievels in top down hierarchical
reasoning systems do not allow search paths at lower levels that fall outside of those decided
above. That is, they severly restrict "movement” at lower levels. But in ISIS-ll, the information
communicated between levels is in the form of constraints. Constraints guide {constrain)
search but do not necessarily restrict search. And constraints may be relaxed if they prove to
be overly constrictive. Hence, levels in ISIS-il may be loosaly coupled through the appropriate
specification of constraints.

The relaxation of constraints is performed in three ways: generative, analytic, and indirect.
Generative relaxation is performed during the performance of search. Each operator
embodies a single constraint. The operator generates alternative successor states by
generating relaxations of the constraint it embodies. For example, a choose-machine
operator embodies a machine choice constraint which soecifies that an operation can have
one or more machines upon which it is to be performed. The operator generates each of the
choices in the constraint as part of its search.

CONSTRAINT-DIRECTED SCHEDULING




PAGE 86

Analytic relaxation is performed in the pre and post-analysis of a level's search. The rules in
L4 the analysis phase examine the available information and may decide to choose a particular
; relaxation of a constraint.

Indirect relaxation is the relaxation of constraints which may not correspond to parameters
in the factory which can be directly controlled. Instead, choices of other constraints may
indirectly determine the relaxations of these constraints. For example, a due date constraint
may be indirectly determined by operation, machine and reservation choices. Hence, ISIS-HI
does not directly choose the value of the due date constraint, but it may be indirectly chosen
through the analytic and generative relaxation of other constraints.

The rest of the chapter elaborates ISIS-il's architecture and provides an example of its use.

5.3.Level 1: Lot Selection

The ISIS-Hl problem-solving architecture was designed to investigate constraints and their
effect on the search process. To simplify the analysis, it was decided to schedule one lot at a
time, in priority order™. The problem of scheduling all available lots in parallel is being
investigated in 1SIS-|II.

1
LOT SELECTION

SEARCH MANAGER

order 49 re search ost
IJ:Iysis //, J%ulysis
order 13 due date Loperator Zselection
o 08 priority-class selection beam -intra-level
order 1 -constraint 1 -1
binding ~inter-leve),
Tot selectien
1 priority-class due-date
Selection

Figure 5-4: ISIS Level 1

The purpose of the lot selection level (figure 5-4) is to select from the set of known lots,
which ones are to be scheduled and in what order. ISIS-Il first examines the model of the

“Loh were manually generated from orders.
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factory to determine what lots must be scheduled or re-scheduled. A lot may be posted for
scheduling under the following conditions:

1. manual posting by human, (posted)

2. pre-emption of a reservation for a resource by ancther lot, (pre-empt)

3. ?van;fi%l) alterations to an existing schedule resulting in invalid reservations,
inv

4. a previous attempt at scheduling failed.-(search-failure)

Figure 5-5 defines a lot which has had a reservation pre-empted by another lot. 'S

{{ lot-xxxx

{ INSTANCE lot
PRIORITY-CLASS: forced-outage
PRIORITY: 20
STYLE: #7J8924
ROWS: 12
DUE-DATE:

range: {{ INSTANCE due-date-constraint
DATE: (45000) }}

STATUS: pre-empt } }}

Figure 5-5: Pre-empted Lot

Once the set of scheduable lots has been determined, they are partitioned by priority
class.'® Each lot within a partition is prioritized according to the nearness of their due date.
Two approaches currently exist. The first approach being used, was derived from the human
scheduler. It is a simple tardiness measure: the more tardy, the higher priority in its class.
The second approach, which remains to be tested, is besed on an "apparent urgency”
heuristic developed in (Rachamadugu, 1982).

The lot selection level also performs a "cleaning” of the lot to he scheduled. It examines the
information provided in the ot schema to assure that it is complete for scheduling. At this
time, the system may add its own additional constraints to the lot. For example, if only a
simple due date is specified, then the this level will add to it a constraint specifying its
relaxations. A due date constraint is chosen by matching the jot's priority-class to one in the
set of alternative due date constraints; each due date constraint specifies the priority-class for
which it is defined.

15An lot can only pre-empt a reservation for a resource by another lot it the latter lot's priority is lower.

1“l’he priority-ciass of a lot is equal to the highest priority-class ot its orders.
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5.4. Level 2: Capacity-Based Analysis

it became apparent during the standalone testing of level 3 that the horizon effect (Berliner,
1973), was increasing a lot's tardiness. Because of the resource analysis level's inability to
generate enough aiternative states, it was not able to "see" machine bottlenecks near the end
of the schedule. Hence, what would appear to be a good partial schedule at the beginning
would run into a bottleneck machine and stay queued for many weeks. To correct this form of
the harizon effect, a capacity analysis level was created to perform a simple available capacity
analysis to detect bottlenecks (figure 5-6). The output of this analysis being bounds on a lot's

operation times.

1
LOT SELECTION

SEARCH MANAGER

order 49 pre search post
analysis analysis
arder 13 due date Zoperator b “selection
selection “beam Cintra-tevel
priority-class 4 ntra-teve
order 108 gg:;};;int Cinter-level
lot selection mach.
1 priority-class  due-date
2 capacity analysis op-
CAPACITY ANALYSIS 2 shift  -----
operation
next operation rooting airfofl  jpgpection
rigig-mi11  rooting
machine
machine 210a 210b 208a
Sequencing
time bound (operation)
reservation Keasurement Selectfon
stari-date r__—"L
dus date

The output of level 1 to level 2, is the highest rated lot to be scheduled next.

generative (operator)

and

snalytic (rule/interaction)

relaxation

Figure 5-6: ISIS Level 2

tevel 2

performs a capacity analysis of the shop in order to determine the earliest start and latest
finish time for each operation in the cperations graph of the lot. The capacity analysis bases
its times on current reservations (loadings) for machines. Hence, is-able to detect existing

bottlenecks in the shop.

This level is composed of two phases: a forward analysis and a backward analysis.
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5.4.1. Pre-Search Analysis

At this fevel, pre-search analysis is simple, in the first phase it creates a set of initial states in
the search space: states representing alternative first operations with their earfiest start time
set to the lot’s requested start date. The forward search operator chosen to extend these
states is a derivative of a critical path analysis. It performs the following:

e generates a state for each successor operation for the current state’s operation,

o sets the start time of the successor state to the earliest time the parent operation
may be completed, and its completion time based on available capacity,

e completion time for an operation is calculated based on existing reservations for
alternative machines that may perform the operation. The operator looks for the
earliest contiguous block of time in which the required operations may be
performed. Hence, earliest start times and latest finish times reflect current
loading and bottlenecks,

¢ checks to see if there already exists a state with the same operation in the search
space. If one is found, and its finish time is greater than the new state’s then the
existing state is deleted. Otherwise the new state is deleted, i.e., the earliest finish
time for an operation is maintained.

Once the first phase search and post analysis is performed, the system returns to pre-
search analysis. In this second phase, a backward search operator is chosen to extend all the
last operation states. it is similar to the forward search operator but work's backwards from
the finish date to provide a latest finish time for each operation,

5.4.2. Search: Capacity Analysis

The search performed in each phase is a simple breadth first search using the single
operator supplied in pre-search analysis. In the first phase, the operations graph is searched
in the forward direction from the first operations to generate earliest start times for each
operation in the graph. In the second phase, the operations graph is searched in the
backward direction from the last operations to provide latest finish times for each operation in
the graph.

5.4.3. Post-Search Analysis

In the current implementation of ISIS-Il, post-analysis is only performed after the second
phase. It simply generates time bounds for each operation based on the earliest start time
and latest finish time. These constraints are passed to level 3.

Obviously, a more detailed anal'sis may be performed. The following are additions under
consideration:
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¢ A botdeneck measure for each machine for each moanth/week will be derived
based on the ratio of queue length to available capacity. If the ratio is high, then
either more shifts, or more machines will be made available.

o If the utility of the earliest start time for the lot, as determined by the due date
constraint, is low, then the capacity of bottleneck machines used by the lot will be
selectively increased during the period that the lot is in process.

o Pairwise swapping of reservations may occur if another lot in the queue has more
slack.

5.5. Level 3: Resource Analysis

The purpose of level 3 is to perform a detailed search utilizing all known constraints and
required resources (figure 5-7). The search space at this level is quite large, hence the
method of search was chosen to minimize search time. The goal of this level is to perform a
“"machine-centered"” search, i.e., directed by the operations graph, and to generate
reservation time bounds for the machine and resources required by the scheduled
operations.

5.5.1. Pre-Search Analysis

ISIS-Il does not search the problem space in the manner detailed in section 5.1. The
majority of lots exhibit a high enough degree of regularity. to allow the creation of a set of
rules which examine an lot and determine its search dimensions. For example, rule
fcrward-search (figure 5-8) states that if the lot is of type "shop-order” and its schedule-
status is "schedule”, then it is to be scheduled in a forward direction from the its start date,
and its operators are to search the operation, machine, and queue position dimensions.

{{ torward-search
{ INSTANCE rule

IF:
lot.type = shop-order
lot.schedule-status = posted
lot.start-date NEQ nil

THEN:

lot.direction <-- forward

lot.start-states <-- first operations

lot.operator <-- choose-operation, choose-machine,
choose-queue-pos } }}

Figure 5-8: forward-search Rule
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Figure 5-7: ISiS Level 3

Rule (figure 5-9) states that if the lot had a reservation pre-empted or a reservaiion is
invalidated, then scheduling is to take place in the forward direction from the operation
previous to the pre-empted cperation. And that the operators that define the search space
are the operation, machine, and queue elaboration operators mentioned earlier.

= ————
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{{ pre-empt
{ INSTANCE rule
\F:
lot.schedule-status = (pre-empt OR invalid)

THEN:
lot.direction <-- forward
lot.start-State <-- (previous-operation of invalid reservation)
lot.operator <-- choose-operation, choose-machine,
choose-queue-pos } }}

Figure 5-9: Pre-empt Rule

All lots, if posted, pre-empted, or invalidated are restricted to searching the operation,
machine, and gqueue dimensions. The search space is expanded only when search in these
dimensions have failed.

Consider lot-xxxx which was just entered and posted for scheduling. Pre-search analysis
would set tha lot so that the scheduling direction is backwards, and the initial search states
are the last operations that may be performed (figure 5-10). The direction was chosen based
on the lot's PRIORITY-CLASS. A "forced-outage" classification implies that the due-date of the
lot is the most important constraint, i.e., the due-date is a major anchor in the search space.

{{ lot-xxxx

{ INSTANCE lot
PRIORITY-CLASS: forced-outage
PRIORITY: 7
STYLE: #7J8924
ROWS: 12
DUE-DATE: {{ INSTANCE due-date-constraint

DATE: (4500 0) }}
STATUS: posted
SCHEDULING-DIRECTION: backward
INITIAL-SEARCH-STATE: {{ INSTANCE search-state
OPERATION: finish-test }}

13

Figure 5-10: Posted Lot

The analysis of lots whose previous attempt at scheduling failed is a little more complex.
the lot of priority class "forced outage". and a backward search from the due-date was
attempted but failed, then the system will try again by relaxing the due-date with limits set by
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the due date constraint. If this in turn fails, then the system must take a more drastic step by
increasing the search space. In this case another operator is added which elaborates the
availabie machine shifts dimension only at the point where the lot is being processed.

As mentioned above, the problem space analysis rules have not been generalized to the
point that they carry out the general analysis of what the search space operators should be.
The current approach is more in common with “expert systems". ISIS-Ill will incorporate the
more general approach.

5.5.2. Search: Constraint-Directed Scheduling

ISIS-Il performs a beam search in a collapsed, rated space. A state is rated by the
constraints that apply to it. The rated space was collapsed because none of the strata are
dominant. A beam search was chosen for two reasons: 1) the space is heavily anchored at
either the start-date or the due-date, and 2) opportunistic searches will be investigated in
ISIS-IIL.

5.5.2.1. States

ISIS-Il pertorms a beam search of the state space of partial schedules. It starts by taking the
initial states generated in pre-search analysis, and extends these states by the operators
designated in that phase. After each application of an operator, the generated states are
rated by applying the constraints, and only the best "n" states are kept for the next iteration of
operator application (i.e., beam search). A search state is defined by an operation, machine,
and quaue position choice (figure 5-11).

{{ search-state
LOT:
PREVIOUS-STATE:
NEXT-STATE:

OPERATION:
MACHINE:
START-TIME:
END-TIME:

CONSTRAINT:

RATING:
PRE.EMPTED-LOTS: 3

Figure 5-11: search-state Schema

The search-state defines a single point in a proposed process routing for an lot. A
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complete process routing is determined by following the the PREVIOUS-STATE links to all the
states that Jead up to the current state. Each state also contains the rating of the state, and
the constraints, including importance and utility, that compased the rating.

5.5.2.2. Operators

Operators are the generative interpretation of constraints. An operator embodies one or
more constraints, and uses them to create new states by generating relaxations of the
constraint(s) they represent. The selection of an operator in pre-analysis is the selection of
the dimensions along which relaxations will be investigated via search. The three most
common operators chosen by pre-search analysis to generate the search space are choose-
operation, choose-machine, and choose-queue-pos. Operators are represented as schemata
in I1SIS-H, but the contents of the IF and THEN siots are lisp functions. These functions are not
derived automatically from constraints, but are written by hand. For simple constraints, itis a
simple task to derive the operators automatically, but compound constraints are harder'’.

The first operator searches the operation dimension (figure 5-12). It represents the
constraint of which operations may precede or follow the an operation.

{{ choose-operation
{ INSTANCE search-operator
IF: "a state has its operation, machine, and reservation bound”
THEN: "create a state binding the operation for each operation that follows,
in the proper direction, the current state's operation” } }}

Figure 5-12: operation-operator Schema

In a similar manner, the choose-machine operator represents the constraint of the choice of
machines that may implement the operation. It will generate a separate state for each
machine that may perform the bound operation.

{{ choosc-machine
{ MSTANCE search-operator
iF: "a state has only its operation boung"
THEN: "create a state binding the machine for each machine associated
with the state’s operation”

Figure 5-13: machine-operator Schema

17The automatic derivation of operators from constraints has also been postponed till 1SIS-I)),
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The choose-queue-pos operator will generate a separate state for each queue position the
lot can feasibly occupy in the machine’s queue. This can be viewed as a compound operator
in that it considers more than one constraint in making its decision. It examines the
reservation constraints on a machine, it examines the reservations for the materials, tools, etc.
required for the operation, and it examines the priority of the lots holding reservations for the
resources it requires. There exists more than one reservation operator. The choice of
operator is currently made by the user, and is specified in the system profile. The choose-
queue-pos operator embodies the following constraints:

e Whether to pre-empt the queue position of any lot of lower priority.
o Whether to pre-empt an lot aiready running on a machine.

* Whether to begin processing of the lot on the next machine before it has finished
on the current machine.

o What time in a free time block to reserve.

Ideally the problem space search phase of ISIS-Il should have rules which determine which of
these constraints should be applied. Currently, the choice of reservation operator is made by
the user. Two types of choose-queue-pos operators have been tested in ISIS-1I: the "eager-
reserver”, and the "wait-and-see-reserver".

Eager Reserver. The eager reserver operator was used in the first two versions of ISIS, It
generates alternative successors to a state that has both its operation and machine chosen,
but does not have a time reservation. Given an arrival time, which is the finish time of its
previous operation, it generates blocks of time, from its arrival time on, in which the machine
is free or machine reservations exist for lots having lower priority. 1t also considers the
operation resource availability during the bleck of time. A resource may have its availability
constrained in one of two ways. A resource may be possesed by some possessor in what is
called a "destroy” manner. That is, it a reservation is pre-empted or split, then the entire
reservation is invalid, hence no work during the possession is accomplished by the original
possesor. Hence, any resource of possession type "destroy" that is not available during the
block, splits the block into two at its point of inavailability. The second type of availability is
called a "delay"” possession. If the resource is reserved by an possession of type "delay”,
then the reservation may be split, without any loss to the original reservation. Hence, any
resource of type "delay” only extends the time that the lot occupies in the block if it overlaps
with the time during which the operation is to be performed. That is, the inavailability of the
resource during the time block only delays, instead of destroys. the performance of the
operation. For each block of time, which ig large enough lor the operation to be performed, it
creates a state with a start and finish time at the earliest possible time in the block. Hence, the
eager reserver jumps to use the machine and its ancillary resource requirements as soon as
possible within a time block.

Wait and See Reserver. Tha wait and see reserver is similar to the eager reserver. It
difters in the time it reserves in a block. This operator would like to wait, before choosing its
reservation time, in order to see what times are available further on in the schedule; there is
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no need to reserve a machine too early if it will sit in a queue later in the schedule. The
“eager-reserver”, in the case of bottlenecks, would result in increased work in process time,
i.e., sitting in queues waiting for a machine to become available because it finished an earlier
operation too soon. The wait-and-see-reserver solves this problem by "tentatively" reserving
the entire time block, and then leaving the choice of actual reservations of resources to level
4, The result is reduced work in process because reservations can be shifted as close
together as allowed by the time block.

5.5.2.3. Constraint Resolution

The key part of the search is the application of constraints in rating a search state (partial
schedule). The rating of a state can be divided into two parts: resolving what constraints
should be applied to the state, and applying the constraints to the state.

Local Resolution. As the search proceeds, states are generated which vary widely in their
choice of operations, machines, and queue positions. Not all constraints in the system may
be relevant in rating the state (partial schedule) in question. For example, each machine may
have zero or more constraints associated with it. These constraints should be considered
only when the corresponding machine is part of the schedule being rated.

ISIS-It dynamically resolves the set of applicable constraints at each search state.
Constraints may originate from four sources:

Modecl-Based: Constraints may be embedded in any object or process in the factory model.
For example, there may be physical constraints associated with a
machine, sequencing constraints associated with an operation, queue
ordering constraints associated with certain work centers.

Hierarchical Imposition: Constraints generated by other levels of analysis will be
incorporated.

Lateral Imposition: Constraints can also be propagated laterally during the search. A
decision made earlier in the elaboration of a schedule may resuit in a
constraint being attached to the lot that restricts a choice point further on
in the search.

Exogenous Imposition: The user may also create and implant constraints. These
constraints can be attached to anywhere in the model, or be globally
attached so that it is considered at each search state.

The above constraints are deposited at the appropriate points in the model, i.e., at the lot,
operation, machine, etc. Hence, actual resolution is performed by examining each schema
(i.e., operation, machine, etc.) in the current state description. The contents of any
CONSTRAINT slots, or constraints attached to any slots which enable the schema are added to
the local resolution set. After the local constraint set is resolved, ISIS-ll filters the set by
performing the evaluation described in section 4.6.5.
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Global Resolution. Unlike some simple game tree searches, the path which leads to a
search state, is as important as the state itself. Each state in the path defines one more
operation, machine, and queue bindings for the lot. And a complete schedule is defined by
the path from the initial stat2 to the end state in the search space. Local resolution, as
defined above, resclves what constraints aftect only the state under consideration. But the
rating of a state is a rating of the partial schedule up to the current state, and not the single
choice represented by the state. Hence, the rating of a state must include not only the local
constraints but the constraints applied to all the states aiong the partial schedule ending at
the current state. For example, the blade length constraint locally resolved at state-n is
included with the local states when rating state-n + 1.

It would appear that the appropriate action would be to rate a state using all of the
constraints associated with all the states in the partial schedule represented by the state.
Hence, the constraints associated with a state are those locally resolved, and the local
constraints along the path from the current slate to the initial state. This turns out to be
incorrect. Consider the due-date-constraint (figure 4-20). Itis a classic evaluation function
as defined in heuristic search. Part of the constraint calculates the work-in-process time of
the lot to the current state, and the other part predicts the remaining work-in-process time to
the end state. Each time the constraint is applied, it is a better estimator of the work-in-
process time, and should overide applications of the same constraint earlier in the partial
schedule. On the other hand, the queue-stability constraint is applied at each state which
binds a queue position. It rates the state by how much it destabilizes existing queue
reservations. The greater the destabilization, the lower the rating. This ccnstraint measures a
decisicn made at that state, and remains invariant over future states, since any future states
cannot affect an earlier state.

Constrainis are classified into two categories: invariant and transient. When iSiS-1l rates a
state, it collects all the invariant constraints along the path from the initial state to the current,
and includes them in the rating. ISIS-Il also gathers up all the transient constraints, but does
not retain duplications. Only the latest instantiation of a transient constraint (closest to the
current state) is saved. The union of invariant and transient constraints form the constraint
set for the state under consideration.

Relative Resolution. As discussed in the section on constraint differentiation (section 4.4),
all constraints are not created equal. Some constraints are more important than others
depending upon the lot being scheduled and the status of the factory. Relative resolution
differentially interprets the resolved constraints by partitioning the constraint set according to
the applicable scheduling goal. As described in section 4.4, a scheduling goal partitions the
constraint set and supplies an importance to each partition. The importance is then uniformly
divided amongst the constraints in the partition.
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f 5,5.2.4. Constraint Application

The first step in constraint application is deriving the utility of each constraint. The utility
reflects the "goodness” of the choice specified by the constraint. Each constraint is
procedurally interpreted by applying the contents of its TESTER slot to two parameters: the
state, and the name of the constraint schema. Hence, the combination oi the state and the
constraint provide all the information necessary for the constraint's utility to be derived. That
is, the constraint is interpreted in the context of the current state, and looks for the schemata
(information) it requires within only the current state,

Now that both the utility of the constraint, and its importance have been derived, ISIS-I|
computes a rating for the state by computing the importance (weighted) average of each
constraint's utility. The state stores each constraint's importance and utility at the state for
later use in explaining a schedules search path.

Once ali the current states have been rated, ISIS simply throws away all but the top n (beam
search) and repeats the search process.

5.5.3. Post-Search Analysis

As the search proceeds, !SIS-Il continually tests to see whether the goal state has been
generated, and/or the search has died without finding a solution. If either of these has
occurred, post-search analysis is entered. Post-search analysis is accomplished by a set of
rules that analyze the results in order to determine whether:

o the system found a satistactory solution.
¢ the system should continue searching if the solution is unsatisfactory.
» another search strat2gy should be pursued.

Consider the example of fot-xxxx (figure 5-10). It is of priority-class "forced outage”. A
forced outage blade must be shipped by its-due date, if not sooner. ISIS-II first attempts to
schedule it backwards from its due date. If a feasible schedule is not found, i.e., it runs out of
time before it runs out of operations, it then resets the lots scheduling parameters to schedule
forward from the "today”. It the results of this scheduling attempt are poorly rated, then it
marks the lot as having failed again, and posts it for re-scheduling. This time, the pre-analysis
rules add another operator which searches the shift dimension for a machine. As in pre-
analysis, these rules represent a portion of "expert” post-scheduling analysis knowledge.
The following defines extensions to ISIS-1l which are being implemented.

5.5.3.1. Wave Search

The current approach to post-analysis views the search step as a single. indivisible action;
once the search is complete, it cannot be re-started from partial state. Yet, post-analysis does 1
have enough information to detect which states in the beam search while rated highly at their
point of creation, led to poorer states later on.

CONSTRAINT-DIRECTED SCHEOULING




MARK S. FOX PAGE 99

One approach that would make use of this inforination is a wave search. A wave searchis a
derivative of beam search but with the added capability of performing a dependency analysis
of states, resulting in a backtracking-like behavior. The following describes the wave search
algorithm:

1. Define wave 1 as containing all initial states. Set the current wave number, j, to 1.

2. Create wave j+1 by extending the top n rated states in wave j through the
application of all applicable operators. Do not delete any states in wave j.

3. Apply the stop search algorithm (e.g., the top n states in wave j are all goal
states). If the search is not complete then setj = j+ 1 and go to step 2.

Once the search has been completed, post-analysis performs a dependency analysis starting
from the last wave. The following describes the analysis.

1. Set j to the last wave generated.
2. For 2ach state in wave j set its expected actual utility (EAU) to its rating.
3. Ifj = 0 then the analysis has failed to detect reasonable retreat.

4. For each state in the top n states in wave j-1. calculate its EAU by the waited
average of the EAU of its children states. And for each state not in the top n, set
its EAU to its rating.

5. Compare the EAU of the top n states in wave j-1 to the EAU states in the same
wave which were not in the top n. If none of the latter states have a "significantly"
higher utility, then set j=j-1 and go to step 3.

6. If some of these latter states have a "significantly” higher utility, then replace the
lowest states in the top n with these n states and start the search again from this
point.

In the search phase, a wave is defined as all possible successors of the top n states of the
parent wave. The system will save all the states in a wave fcr post-analysis. The post-analysis
phase of the wave search derives an expected average utility for each of the top n states in a
wave by averaging the children EAUs. The resulting EAL! is a measure of the expected utility
of ail schedules that emanate from the state. This is in contrast to the rating assigned to a
state. The rating reflects the average utility of all the constraints associated with the partial
schedule embodied in the state, and in some cases, a prediction of the utilities of future
constraints to be found in the extensions of the state (partial schedule). Hence, the EAU
contains "more"” perfect information. The result of this analysis is the removal from certain
waves the states that had a high "predicted” utility (i.e, rating), but whose resultant EAU was
low. The wave may then proceed forward (generating new waves), extending a new set of
states which may contain better schedules.
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5.5.3.2. Constraint-Directed Diagnosis

| A second post-analysis technique (and complementary to wave search) relies on a more
theoretical approach to constraint analysis. It supercedes an expert systems approach in that
it has "deep" knowledge of what constraints are and how they interact with other constraints.
The approach is as follows:

As described in the section 4.5, constraints may be related by a constrains relation. These
relations define how the selection of a value for a constraint may affect another constraint's
selection. Reviewing the form of the constrains relation:

{{ constrains-
DOMAIN;
‘ RANGE:
; DIRECTION:
f SENSITWITY:  }}

Figure 5-14: constrains Relation Schema

This relation defines whether an increase in the utility of the domain constraint will positively
or negatively affect the utility of the range constraint. The SENSITIVITY slot defines how
sensitive the RANGE's utility is to a change in the DOMAIN's utility.

The method of analysis proposed here is similar to the methods of diagnosis found in
systems such as Mycin (Shortlifte, 1976). Prospector (Duda et al., 1978), and PDS (Fox et ai.,
1983). Constraints and their "constrains” relations form a network. Each constraint can be
viewed as having two utilities: a direct utility derivad from the utility of its relaxation, and a
indirect utility derived from the constraints constrained by it (i.e., the range schemata for
< which it is the domain of a constrains relation). The indirect utility of a constraint is the sum
of the indirect utilities of its range constraints, weighted by the relation’s sensitivity and the
range constraint’s importance.
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SIGMA LS U,
i member R
SIGMA L
i member R
where
R = set of constraints in range of constrains relation emanating
from constraint being rated.

U

indirect utility of constraint i in R

S, = sensitivity associated with constrains relation linking

ith constraintin R

li = importance of the constraint i in the R

The procedure for calculating a constraint’s indirect utility is:

1. starting with with the leaves of the graph (i.e., constraints which have an empty R
set), set thair indirect utility to their direct utility.

2. for each constraint which has a non-empty R set, and all members of the set have
a non-nil indirect utility, use the above formula to calculate their indirect utility.

3. it all constraints have an indirect utility, then stop, otherwise go to 2.

The resultant indirect utility represents the indirect effect of the constraint's value selection.
A decision can now be made as to which constraints to relax, based on the smaliness of their
indirect utilities.

Selecting a constraint to relax also selects the level in ISIS-II's hierarchy in which to perform
the relaxation. Constraints form a hierarchy when structured by constrains relations. This
hierarchy can be used to derive the levels of scheduling. For example, the following is one
such hierarchy. A constraint at one level constrains the values of some or all constraints on
the next level lower. Cost constraints affect how many shifts are going to be used. Selection
of shifts constrains how well due dates and other time constraints are going to be met.
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Level Constraints
Lot Selection priority class
Advance Planning cost

: quality
Capacity Analysis shift

operation alternatives
machine alternatives

Detailed Scheduling due date
work in process
start date

Figure 5-15: Constraint Interaction Hierarchy

5.6. Level 4: Reservation Selection

The fourth level (figure 5-16) takes as input time bounds on each of the resources required
by the operations in the operation sequence selected at level three. |t selects a time
reservation for each of the resources which attempts to minimize the work-in-procass time of
the lot. ’

5.7. An Example
To show how ISIS-H operates, the construction of a schedule at level 3 (detailed scheduling)
will be analyzed. Due to the number of aiternative schedules that can be produced, only one

path will be traced through the solution space, noting alternatives generated along the way.

Consider the forward scheduling of a 7J8924 blade (figure 5-17).
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Figure 5-16: ISIS Level 4
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{{ 798924
{ INSTANCE CSE
ROW-QUANTITY: 120 ’
MANUFACTURING-QUANTITY: 130

ROOT-WIDTH:

FOIL-LENGTH: 31

LUGS:

TENON: i
T STRIP: t
| PEEN: t } 1) i

Figure 5-17: Blade 7J8924 g
The 7J8924 is a CSE blade (figure 5-18). It inherits its operations graph from CSE (figure
5.22).
{{ CSE

{ 1s-A blade
FIRST-OPERATION: forge rigid-mill
Constraint: cse-forge-preference
LAST-OPERATION: finish-test
MATERIAL-TYPE: stainless-steel
ROOT-TYPE:curve } }}

Figure 5-18: CSE Blade

lot-7J8924 represents the lot for the blade type.
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{{ 10t-7J8924

{ INSTANCE lot
PRIORITY.CLASS: forced-outage
PRIORITY: 7
STYLE: 7J8924
ROWS: 10
DUE-DATE: {{ INSTANCE due-date-constraint

DATE: (45000) }}

STATUS: posted
SCHEDULING-DIRECTION: forward
INITIAL-SEARCH-STATE: {{ INSTANCE search-state
OPERATION: forge }}
{{ nSTANCE search-state

OPERATION: rigid-mill }}
N
Figure 5-19: lot 7J8924 Schema

The presearch analysis decides to schedule the forced-outage in a forward direction
because of a lack of sufficient lead time. It creates two initial search states, one for each of
two alternative first operations: forge (figure 5-20) and rigid-mill (figure 5-21)’8. These first
two search states provide alternate bindings of the operation slot. They do not specify either
the machine, nor the process times.

18The representation of these operations is altered, i.e., explicit spocification of enablement is replaced by simply
listing the names of the resources required, in order to reduce the length ot the example.
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{{ forge
{ INSTANCE operation
NEXT-OPERATION: inspection-1
SETUP-TIME: 6
PIECE-TIME: 0.2
MACHINE: cse-forge-line '} 1}

{{ cse-forge-line
{ INSTANCE machine
capacity:1} }}

{{ cse-forge-preference
{1s-A operation-preference
OPERATION: forge
TRUE-UTILITY: 1.5
FALSE-UTILITY: 08 } }}

Figure 5-20: Forge Operation

The initial constraint set for the torge operation includes:

7J8924-~due-~date - ; from lot-7J8924

cse-forge-preference i from CSE blade
The context of the due-date constraint tests the presence of a start and finish time binding.
Since only the operation is bound, the context fails, and the 7J8924-due-date constraint is
removed from the constraint set. The cse-forge-preference context evaluates to true, so that
it remains in the constraint set. Since there are no earlier, parentai states, this comprises the
constraint set. The forced-outage goal (figure 4-23) is then applied to prioritize them. There
being only one constraint, it receives full priority. Evaluating the cse-forge-prefer:ance, it
returns a rating of 1.5, which, in turn, becomes the rating of the search state,
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{{ rigid-mill
{ INSTANCE operation
NEXT-OPERATION: inspection-1
SETUP-TIME: 2
PIECE-TIME: 4
MACHINE: rigmill
LATERAL-CONSTRAINT: no-airfoil-op } }}

{{ rigmill
{ INSTANCE machine
capaciTy:4}  })

{{ No-Airtoil-Op
{ 1s-A operation-requirement
OPERATION: (TYPE is-a airfoil-operation)
TRUE-UTILITY: 0
FALSE-uTILITY: 1 } )}

Figure 5-21: Rigid Mill Operation

The initial constraint set for the rigid mill includes:

7J8924-due-date ; from the 1ot-7J8924
cse-forge-prefarence ; Trom CSE blade

As before, the context of the 7J8924-due-date fails, leaving only the cse-forge-preference. It
evaluates to 0.8 since the bound operation is not the fcrge. The choice of a rigid-mill
operation r2sults in the addition of the no-airfoil-requirement to the LATERAL-CONSTRAINTS slot
of the search state. Lateral constraints are inherited by a state's siblings.

Once all the generated states have been rated, the beam search orders, and keeps only the
"n" highest rated states. Since n i larger than 2, both states remain in the search space.

In the next iteration of the scheduler the states in the search space are extended through
the application of all applicable operators. Since each specify an operation, and no machine
or process times, the only operalor applicable is choose-machine (figure 5-13). It takes a
state and generates new sibling states with the machine bound to a member of the
operation's machine set. Extending the state bound to the forge operation, results in the
machine being bound to forge-line machine.
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{{ state-3
{ INSTANCE search-state
PARENT: state- 1
L OPERATION: forge
MACHINE: forge-line} }}

The constraint set for this state does not have any locally specified constraints. Taking the
union of the local constraint set, and its parent constraint set, state-3's constraint set is
composed only of the cse-forge-preference. Its evaluation maintains the rating of 1.5 for the
state.

{{ state-3
{ nsTANCE search-state
PARENT: state-1
OPERATION: forge
MACHINE: forge-line
CONSTRAINT-SET: cse-forge-preference
RATING: 1.5} }}

State-3 is extended by applying the choose-Gueue-pos operator. Fer simplicity sake, we will
assume there does not exist any reservations for the machine. Hence, a single stale is
generated for the machine with the reservation spanning the time (4450 Q) to (445 7 ?).

{{ state-4
{ INSTANCE search-state
PARENT: state-3
OPERATION: forge
MACHINE: forge-line
START-TIME: (4450 Q)
END-TIME: (445?27} } }}

The local constraint set contains only the 7J8924-due-date. !ts context evaluates to true
because the state contains a start and end time. Combining this with the constraint set of
state-3, the following constraints are applicable:

cse-forge-preference
7J8924~due-date
queue-stability

The preference constraint is an example of an invariant constraint. lis rating is incorporated
(at a locally determined priority) in every state from the point of its introduction. The due date
constraint is a transient constraint. Its rating is included in every state irom its point of
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introduction until introduced again. The new rating at the point of re-introduction overrides
the previous rating *°.

The queue-stability is also an invariant constraint. It measures the instability in schedules
introduced when a lot pre-empts another lots reservation in a queue. This constraint
originates in the general machine schema.

The due date constraint evaluates a state by computing the expected time to complete the
lot, and returning the utility of that date as specified by tha utility function. [n this case, the
expected completion is determined by using average lead-time statistics.

{{ state-4

{ INSTANCE search-stato
PARENT: state-3
OPERATION: forge
MACHINE: forge-line
START-TIME: (4450 0)
END-TIME: (4457 7)
INVARIANT-CONSTRAINT.SET: cse-forge-preference

queue-stability

TRANSIENT-CONSTRAINT-SET: 7J8924-due-date } }}

The constraint set for state-4 is partitioned into two sets. A weight of 0.9 for
7J8924-due-date and 0.05 for each of cse-forge-preference and queue-stability. |t
the due date has a rating of 1.2, and the stabiiity a rating of 1 (no pre-emptions), then the
rating for the state is (0.9 * 1.5) + (0.05 * 1.5) + (0.05* 1) = 1.205.

The system continues by extending state-4 using the choose-operation operator. The next
operation is inspection-1. Separate states are generated for choosing the machine(s), and
queue position(s).

{{ inspection-1
{ INSTANCE operation
PREVIOUS-OPERATION: forge rigid-mill
NEXT-OPERATION: kt-iine rotary-line root-line  }}}

After the inspection-1 operation is fully specified, then three alternative states are
generated for the possible next operations: kt-line, rotary-line, and root-line.

19"'\ the case of the due date constraint, any re-introduction provides a more certain rating.
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{{ kt-line
{ INSTANCE Operation
PREVIOUS-OPERATION: inspection-1
NEXT-OPERATION: root-inspection } }}

{{ rotary-line
{ INSTANCE operation
PREVIOUS-OPERATION: inspection-1
NEXT-OPERATION: root-inspection } }}

{{ root-line
{ INsTANCE operation
PREVIOUS-OPERATION: inspection-1
NEXT-OPERATION: root-inspection } }}

{{ root-inspection
{ NSTANCE operation

PREVIOUS-OPERATION: kt-line rotary-line root-line
NEXT-OPERATION: xlo-airfoil 910-airfoil } }}

At his point, if the rigid-mill based schedule was being extended, this operation would not
be generated. The lateral constraint attached at state-2 would force the scheduler to skip

over this and the airfoil-inspection operations.
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{{ xto-airtoil
{ INsTANCE airfoil-operation
PREVIOUS-OPERATION: root-inspection
NEXT-OPERATION: airfoil-inspection
MACHINE: wmit wmf2 wmi3 wmf4 wmi5 wmF6 } }}

{{ wmt1
{1s-A machine
SHIFTS: 3
PRODUCTIVITY:  0.81
LAB-MACH-RATIO: 0.5

RESERVATION: lot-22-res
lot-48-res
COST-CENTER: 4608
CONSTRAINT: wmf-length-requirement

wmf-lug-preference  } }}

{{ 910-airtoil
{ NsTaANCE airfoil-operation
PREVIOUS-OPERATION: root-inspection
NEXT-OPERATION: airfoil-inspection } }}

{{ airfoil-inspection
{ INSTANCE airfoil-operation
PREVIOUS-OPERATION: xlo-airfoil 910-airfoil
NEXT-OPERATION: finish-test } }}

The last operation in the search is finish-test.

{{ tinish-test
{ INSTANCE operation
PREVIOUS-OPERATION: airfoil-inspection } }}

Figure 5-22: Example Operation-Graph
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5.8. Incremental Scheduling, Interactive Scheduling, and
Explanation

I1SIS-1l incrementally schedules lots. As the status of the plant changes, i.e., hew lots are
received and scheduled lois have their reservations invalidated, ISIS-|l schedules or re-
schedules the affected lots, and may pre-empt the reservations of lots of lower priority. Those
lots whose reservations are pre-empted are also re-scheduled.

ISIS-1l also provides an interactive scheduling capability. By means of a gantt chari
interface the user can create reservations, or alter reservations made either manually or : 3
automatically. When a reservation is made for resources, ISIS-il checks the attached .
constraints and provides feedback to the user as to their satisfaction. Interactive scheduling !
may proceed at any level of abstraction contained in the operations graph. In addition, the
interactive system can infer and create any missing reservations based on a standard time
analysis, and time constraints provided by the existing reservations (see Smith (19€3)).

A simple explanation facility is also provided. Attached to each constraint is an english
phrase which describes the constraint. The explanation combines the constraint's
description with a simple description of how well the constraint was satisfied. Since
constraints represent much of the knowledge in the search, describing a schedule by
describing its attached constraints, is quite informative.

5.9. Conclusion

This chapter described ISIS's approach to constraint-directed scheduling. In particular,
constraint-directed scheduling is composed of:

e multiple levels of representation which are coupled by constraint passing. The
constraints passed between levels represents the knowledge gained from the
search passed at each level,

e pre-analysis of each level. The rule base in the pre-analysis of each level
examines the search problem and bounds the search space by selecting both
operators and constraints to apply.

e constraint-directed search in which constraints are used to rate states in the
search space much like a classical evaluation function.

e constraint-directed diagnosis. The rule bace in post-analysic uses constrainis to
detect the acceptability of schedules. Additionally, const-aints can be used to
detect incorrect decisions and the level at which they cccurred, hence enabling
the system to back up to the appropriate level of search.

The "theory” of constraint-directed search has only begun to be elaborated. There are
pieces of ISIS-l which have yet to be tested. Their are pieces for which aiternative
mechanisms exist, e.g., using a MYCIN-like combining function for canstraint utilities in rating

CONSTRAINT-DIRECTED SCHEDULING

I P SR



MARK S. FOX PAGE 113

states, and they also have yet to be tested. Though some analysis has been peformed (see
the next section), much work remains to be done.
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Chapter 6
System Evaluation

Summary

Two series of experiments are performed, all based on a portion of the turbine
plant defined by the plant scheduler. Each experiment in a series, tests a different
combination of constraints, scheduling direction, search operators, and levels of
reasoning. One experiment removes the capacity analysis and reservation
selection levels. The resulting scheduie displayed high tardiness (65 of 85), and
high work in process times with a makespan of 857 days. This is due to horizon
effect caused by the coupling of beam search and insufficient machine capacity.
The experiment which included the capacity analysis and wait-and-see reservation
selection levels displayed fewer tardy lots (17 of 85), and very low work in process
time with a makespan of 588.8 days. At this pcint, machine capacity is the
principal limilation affecting tardiness. Experiments with all lots being scheduled
backwards from the due cate and added capacity were also performed.

6.1. Introduction

As is true in many Al systems (e.g..Bacon, AM), measuring the success of ISIS can be
difficult and controversial. Unless the domain has a clear measure of success, such as: the
computer configuration "works” (i.e., R1), the sentence is recognized (i.e, speech
understanding), coal was found (i.e., prospector), determining the "success" of the system
may be a thesis in itseif.

Three approaches have been taken towards measuring ISIS's performance. The first is an
analysis of the type of reasoning a job-shop scheduling system requires to successfully
consider the multitude of constraints in its environment. The previous chapters describe the
approach. In particular they describe how ISIS can represent, reason with, and relax
constraints during the scheduling process.

The second approach is to ask the expert how well ISIS performs relative to his/her
expectations.

The third approach is to analyze the performance of 1SIS on data representative of tpe
plant's orders. Though it appears simple. the experimental design is quite difficult. In
particular, there is no single measure of the efficacy of a schedule. Other scheduling
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systems, because they focus on the optimization of a single criterion such as tardiness, are
easy to analyze. But ISIS attempts "optimize" an order's schedule according to its own,
: peculiar constraints. As stated earlier, each order differs by the constraints applicable and
‘ their prioritization. 1t is the satisfaction of the constraints, in a particular context, that define
the efficacy of an order's schedule. Global statistics are not indicative except in a gross
sense.

A set of experiments were conducted to ascertain the aggregate performance of the system.
A portion of the turbine component plant was modeled and a representative set of orders (85)
generated and scheduled over a two year period. The following defines the generation of the
test data.

A portion of the turbine component plant was chosen to test ISIS. About twenty turbine
blade styles, representative of the types of orders worked on in the area, were chosen by the
plant scheduler. These styles were chosen 30 that their operations would maximize resource
contention. A typical lineup is composed of the following sequence of operations and
machines:

1. First Straightening (machine: ffs*),

2. Root Forming (xao®, msr*, mr8a),

3. Second Straightening (fss*),

4. Airfoil Forming (wmct-4, wmf1-4),

5. Peg Milling, Brazing, Grinding (mvt1, sabb, fps*, m3db, xpma, ghbv, jwia-c),
6. Final Straightening (ftq*, fts*),

;_ 7. Layout and Pack (ilpa).

Lineups are di-graphs; alternative paths exist to achieve the above sequence. Each node in
the di-graph represents an operation which can be implemented on one or more machines.
; About half the operations have more than one machine or work-center at it can be performed.

The distribution of orders for an average year was specified by the scheduler to be a uniform
300 with a standard deviation of 50. Orders were allocated for delivery in a given month
according to a monthly ship distribution determined by the scheduler,

Within each month an order was assigned a ship date on a weekly basis by uniformly
dividing the month’s orders amongst the weeks. Next, the priority class of an order was
determined by the foliowing percentages:
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Forced outage (FO) 2%
Critical replacement (CR) 5%
Ship direct (SD) 20%
Service order (SO) 33%
Shop order (SH) 20%
Stock order (ST) 20%

Table 6-1: Percentage of Orders in Each Priority Class

Once the class of order was determined. the lead time for the order (i.2.. the time of arrival of
the order into the plant), was determined by the following uniform distributions (in weeks):

Forced outage [0,12]
Critical replacement [0, 18]
Ship direct [0, 62]
Service order [0, 62)
Shop order [0, 82]
Stock order [0, 60]

Table 6-2: Lead Time Distributions by Priority Class

A year's orders were randomly generated according toc the above statistics, and the first 85
{ordered by requested start date) were scheduled. Appendix B list the orders used to test
ISIS.

A worst-case complexity analysis will shed some iight on the difficulty of the problem.
Assuming that:

¢ we are scheduling a flow shop containing o operations,
e there are n orders to be processed,
o there does not exist any precedence amongst orders, and

o the size of gaps (i.e., idle time) is ignored.
Then the number of different schedules that exist is:
n)°
Generalizing the problem to include a single alternative machine for an operation, then for

each sequence of n orders in front of a machine, there ara 2" ways in which each orders may
choose a machine to run on. This results in a worst case complexity of

(2" n))°
In our test data

o is approx 8 (excluding alternatives), and
nis 85

resulting in a worst case complexity of
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Note that this number does not consider idle time of varying lengths as different schedules,
nor does it consider aliernative operations, and other resource substitutability.

The testing of ISIS is an ongoing process. The following series of experiments only test of a
small number of the possible variations ISIS may take in problem-solving structure and
constraint content.

6.2. Series 1 Experiments

The first series of experiments were based on a model and set of constraints provided by the
scheduling expert. In experiments one through eight, all forced outage (FQ), critical
replacement (CR) and ship direct (SD) orders are scheduled backwards from their due date,
and the rest are scheduled forwards {rom their order arrival date. In experiments nine through
twelve, all orders are scheduled backwards Orders are assigned a priority according to their
classitication. The ordering from high priority to lowest is FO, CR, SD, SO, ST. The types of
constraints included in the series are:

¢ Alternative operations,

¢ Alternative machines,

e Pre-specified due date,

o Pre-specified start date,

o Work in Process,

* Queue ordering constraints to reduce setup time,
o Lug and length machine physical constraints,

¢ Resource availability,

e Shop stabifity.

Tweive experiments were performed in this series. A detailed a description of the resuits of
these experiments can be found in appendix C. The following analyzes experiments 1, 2, 4, 8
and 12, which | chose as the more interesting. Each experiment was run using the same
order/lot data. Experiments 1 and 8 were also run on nine additional sets of test data,
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6.2.1.Experiment 1 Analysis

The following are the characteristics of Experiment 1:

e The capacity analysis ievel was removed,
o the beam search width was set to 9, and

e orders were scheduled in priority order. A higher priority order may pre-empt
resources of a lower priority order, and

e the eager reserver version of choose-reservation was used.

¢ The purpose of experiment 1 was to test a simple beam search approach which was found to
‘ be useful in both speech (Lowere, 1976) and vision (Rubin, 1978} tasks?C. A beam search
approach reduced the complexity of the problem dramatically. With a beam width of size b,
only b schedules are produced. A better measure of the complexity of the task is to examine
the rumber of states generated by the search. With a beam width b, and the number of
reservations generated for each state being less than n/2, and no machine alternatives, a
reasonable upper bound on the number of states examined to generate a complete shop
schedule is
(n/2)bon
if an alterrrative machine is specified for each operation, then an upper bound on the number
of states generated is:
(nbon)
in this saries of experiments this is approximately 85*9°8*85= 520,200 states, or 6120
states/order.

The actuval number of states generated is much smaller. This is due partially to the
existence of alternative paths in the lineups which reduces the number of reservaticns
associated with a machine. Coupled with the time ordered arrival of orders, the number of
reservations generated at a machine is well below n/2. The number of states generated is
also reduced by having only a single machine for half the operations. Hence if the number of
reservations (states) generated for each machine considered is reduced to about 6, and the
number of alternative machines set t0 1.2, then the number of states generated is
approximately (6*1.2°9*10) 648.

The following gantt chart summarizes the machine schedules. Each row is a separate
machine. The rows, y axis, have been ordered by time of appearance in a lineup. Machines at
the top of the chart are used first, and machines at the bottom are used last. The x axis is
time, with each column depicting one week. A row-column position without a character in it
does not have any work to perform for that week. A row-column position with an ¢ has 1t0 4
days of the week scheduled, and a position with an @ has 5 to 7 days scheduled.

2"’Tl'\is was the first version of ISIS constructed (sce chapter §).
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Figure 6-1: Experiment 1 Ganit Chart

The following summarizes the aggregate statistics for orders in the scheduling run, broken
down by priority class.

STATISTIC SD SO ST SH All
Orders Scheduled 9 19 14 43 85
Tardy lots 0 16 14 35 65
Avg. Tardiness 0 31.36 186.01 122.90 99.82
Avg. Finishing Lateness -0.97 30.19 186.01 122.50 99.25
Avg. Starting Lateness 263.83 125.88 71.51 118.21 127.56
Avg. WIP 32.31 200.16 324.80 402.34 305.15
Avg. Processing Time 30.86 31.59 28.32 30.28 30.31
Avg. Queue Time 1.45 168.56 206.18 372.06 274.84
Avg. % Processing Time 95.23% 24.98% 9.53% 8.67% 21.62%

Table 6-3: Experiment 1 Statistics

The first glaring problem with Experiment 1 is that 65 of the 85 orders scheduled were tardy!
There are two bottlenecks in the shop, the first straightening area, ffs*, and the final
straightening area, fts*. Both of these areas dc not appear to have enough capacity to handle
the orders. This is not actually the case. The average tardiness tor the crders is 99.82 days.
This is less than the average starting lateness of 127.56 days. The latter statistic states that
orders were started about 127.56 days after they were known. If these orders were started
closer to the time they were received by the plant, than they could be scheduled earlier
through the bottlenecks.
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Wherein lies the problem? The problem with experiment 1, is that the beam search is unable
to spot the second bottleneck in advance (it occurs near the end of the schedule), and chose
late rather than early reservations on the preceding machines. When the order finally arrived
at the last machine, there was a large queue in place. Hence, orders spent undue amounts of
time in queue, while other machines were left idle. This is an example of the horizon effect.
The beam search has no provision for “looking into the future” inorder to alter its current
scheduling decision. It assumes that by generating enough alternative states that the
problem will be overcome. This turned out to be false. There was not enough information
early in the schedule to discern problems tater on.

The differences amongst classes of orders is dramatic, but expected. Higher priority orders
(e.g.. SD) which were given pre-emptive access to resgcurces, had little tardiness (0), and a
high average percentage processing time (95.23%). The lowest priority orders, (e.g., SH) had
an average percentage processing time of 8.67%.

The next table provides another perspective on the performance of this experiment. Five
machines were chosen based on their criticality to the majority of the orders in the
experiment. For each machine, its percent utilization and average queue time of orders is
defined for the makespan period of the version's experiment.

Machine % Utilization Avg. Queue Time

fis* 41.2 0
fss* 21.2 53.4
fps* 219 18.1
fis* 61.6 100.5
ilpa 8.6 35.1

Table 6-4: Machine Utilization for Experiment 1 (makespan: 857.4 days)

There is nothing surprising about these statistics. Basically, all of these machines are under
utilized when comparing their processing time to their maximum availability. Never the less,
fts* has a high average queue time due to the bunching of orders late in the schedule.
Makespan for this experiment is over two years, much of which is due to tardiness of orders.

Another measure of the performance of ISIS is how well the constraints it uses are satisfied.
The constraints used in these experiments are summarized in appendix A. The results
presented here summarize the utilities of five classes of constraints. Each class contains from
one to eight different constraints.

stability: constraints which measure machine queue stability (pre-emption).
wip: constraints on the work in process time of a lot.
due-date:. constraints on the due-date of a lot.

attribute-preference: preference constraints which measure machine and product
attributes.
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g-constraint: constraints which measure preferences for certain orderings of lots in
machine queues.

These constraints have a maximum utility ranging from 1.1 to 1.5. For each group of
constraints, the number of instances of the constraint found in a priority class and its average
utility are listed:

Class Number Average Utility
Priority Class SD
Stability 76 1.0
wip 9 1.8
Attribute-Preference 18 11
Q-Constraint 18 1.0
Priority Class SO
Stability 160 1.0
Due-date 19 05
Attribute-Preference 38 1.0
Q-Constraint 38 1.1
Priority Class ST
Stability 118 10
Due-date 14 1.0
Attribute-Preference 28 1.0
Q-Constraint 8 1.1
Priority Class SH
Stability 366 1.0
Due date 43 0.5
Attribute-Preference 86 10
Q-Constraint 86 11

Table 6-5: Constraint Satisfaction Summary for Experiment 1

SD's constraints appear acceptable to good. especially wip. ST lots are acceptable. Both
SO and SH have poor due date utilities. This confirms what we have aiready seen in the
statistics above.

Experiments 1 and 3 were tested on an additional 9 sets of test orders, randomly generated
from the same sales statistics. The following summarizes the performance of experiment 1:

STATISTIC Min Max Mean Std
Taray lots 85 72 64.3 4.51
Avg. Tardiness 89.8 159.84 138.44 18.19
Avg. Finishing Lateness 99.25 158.13 137.16 17.7
Avg. Starting Lateness 127.56 219.87 189.55 240
Avg. WIP 208.79 305.15 2674 25.54
Avg. Processing Time 29.26 30.86 29.96 0.52
Avg. Gueue Time 179,22 274.84 237.5 25.35
Avg. % Processing Time 21.62% 35.04% 31.12% 3.86

Table 6-6: Experiment 1 Average Statistics

The number of tardy lots is high with the average tardiness exceeded the average starting
lateness.
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6.2.2. Experiment 2 Analysis

The purpose of experiment 2 was to determine whether the horizon effect couid be reduced
by increasing the utility of early reservations. This was accomplished by altering the utility of
the due date constraint. Where previously, a due date constraint placed a high utility on
shipping an order close to its requested due date, it was altered to increase the utility of
shipping early. In this way, states with early reservations were rated as good as states with

later reservations. Hence, experiment 2 is exactly the same as experiment 1 except for the
altered due date constraint.

The same orders were run through experiment 2 as in experiment 1. The gantt chart for
experiment 2 is;
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Figure 6-2: Experiment 2 Gantt Chart

The statistics for the orders broken down by priority class are:
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STATISTIC SD SO ST SH Al

H Number of orders 9 19 14 43 85

' Tardy lots 7 17 14 41 72
Avg. Tardiness 0 32.05 144.74 203.27 133.83
Avg. Lateness (finishing) -0.97 31.82 144.74 203.16 133.683
Avg. Lateness (starting) 263.83 112.01 74.51 202.51 167.69
Avg. WIP 32.31 215.65 280.23 398.52 299.39
Avg. Processing Time 30.86 29.90 28.32 29.63 29.60
Avg. Queue Time 1.45 185.75 251.9 368.89 269.78
Avg. % Processing Time 95.23% 24.62% 14.73% 8.44% 22.28%

Table 6-7: Experiment 2 Statistics

By changing a single due date constraint, it appears that the resultant schedule is worse
than experiment 1 (i.e., tardiness has increased without a significant change in WIP). This
appears to be counter intuitive. Actually, the statistics are better than experiment 1. The
classas tardiness and WIP for ST orders are decreasing.

CLASS TARD. V1 TARD. V2 WIP V1 WIP V2
SD 0 0 32.31 22.31
SO 31.36 32.05 200.16 215.65
ST 186.01 144,74 324.5 280.23
SH 1229 203.27 - 402.34 308.52

Table 6-8: Experiment 1 & 2 Comparative Statistics

it is only for the SH orders that the statistics degenerate. This can be attributec to the
bottleneck in the last operation. Since orders are scheduled in priority order, SD orders were
schedule first, followed by SO, ST, then SH. Itis oniy when the SH orders wera scheduled that
the combination of the bottleneck and the horizon effect caused the last set of orders to have
a large increase in tardiness and work in process. The degeneration of SH statistics may be
explained by the aitered search space. In experiment 2, earlier reservations are chosen,
hence the SH orders start earlier but queue in front of the bottleneck never the less. The
increase in average tardiness is due to the general inavailability of the final machine fs*. That
is, the SD, SO, and ST orders have reserved the fts* earlier than in experiment 1, hence
reducing the capacity of the machine for early reservations for SH orders. Hence, SH orders
can only find capacity on the "late side"” of their due dates.

The following are the machine utilization and queue time statistics:
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Machine % Utilization Avg. Queue Time
ffs* 38.3 0
fss* 19.7 66.3
fps* 20.3 218
fts® 57.2 138.1
. ilpa 7.9 11.9

Table 6-9: Machine Utilization for Experiment 2 (makespan: 923.5 days)

Makespan has increased. Utilization remains about the same as in experiment 1 due to
equivalent makespans. But average queue times increase at the fss* and fts®* machines. The
reason for this will be explained in the experiment 4 analysis.

The following is the summary of average constraint utlities:

Class Number Average Utility
Priority Class SD
Stability 78 1.0
Wip 9 1.47
Attribute-Preference 18 1.08
Q-Constraint 18 1.0
Priority Class SO
Stability 160 1.0
Due-date 19 0.64
Attribyte-Preference 38 1.09
Q-Constraint 38 1.0
: Priority Class ST
) Stability 118 1.0
- Due-date 14 0.56
¢ Altribute-Preference 28 1.1
Q-Constraint ] 10
Priority Class SH
Stability 366 1.0
Due date 43 0.22
Altribute-Preference 86 .09
Q-Constraint 88 0

- A oA

Table 6-10: Constraint Satisfaction Summary for Experiment 2

The SD constraints do not differ from experiment 1. SO lots show a slight improvement in
due date, but at the cost of both ST and SH's due date utilities.

6.2.3. Experiment 4 Analysis

To reduce tardiness due to the horizon eftect, the capacity analysis level is included (see
section 5.4). The new level performs a capacity analysisz’. It takes A dynamic programming
approach to determining the carliest start time and latest finish time for each operation to
produce an order. Times are based only on start timg, finish time, machine capacity, and
exigting reservations for each machine. It ignares all the other constraints used by the
detailed scheduling level. The result of this analysis is a set of time bounds for an order's

2 This was the second version of ISIS constructed which is described in chapter 8.
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operations. These time bounds are defined as constraints and added to the existing
constraints used at the detail scheduling level.

The following is the gantt chart for experiment 4:
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Figure 6-3: Experiment 4 Gantt Chart

The schedule’'s summary statistics are:

STATISTIC SD SO ST SH Al
Number of lots 9 19 14 43 85
Tardy lots 0 0] 0 13 13
Avg. Tardiness 0 0 0 36.81 18.62
Avg. Lateness (finishing) -0.97 -30.31 -66.69 19.43 -8.04
Avg. Lateness (starting) 263.83 58.76 24.17 145.51 118.66
Avg. WIP 32.31 106.73 119.14 271.78 206.74
Avg. Prccessing Time 30.86 20.39 32.25 30.10 30.38
Avg. Queue Time 1.45 177.34 86.89 241.68 176.37
Avg. % Processing Time 96.23 27.94 38.87 13.30 29.46

Table 6-11: Experiment 4 Statistics

The effect of the constraints’ generated by capacity analysis are dramatic. The number of
“tardy lots is reduced form the current best of 65 to 13. Wark in process, tardiness, and
lateness are also reduced across all classes of orders. Again, the bottleneck at the fis®
machine manitests itself in the SH orders; the number of tardy orders were not eliminated, but
reduced from 35 (experiment 1) to 13 (experiment 4),
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The cost of the added capacity analysis is, on the average, linear with the number of
operations in an operaticn graph. A small cost compared to the affect it has on the horizon

eftect.

The following are ihe machine utilization and queue time statistics for this experiment:

Machine % Utilization Avg. Queue Time
fts* 47.9 0

fss* 24.6 22.2

tps* 25.4 3.1

fts* 716 65.9

ilpa 9.9 52.2

Table 6-12: Machine Utilization for Experiment 4 (imakespan: 737.6 days)

Makespan has been reduced by 119.8 in comparison to experiment 1. Better scheduling of
orders through the bottlenecks has pushed much of the reservations earlier in time, reducing
the "tardiness tail”. Utilization of all rnachines have gone up, though not significantly on the
ilpa since it is not a bottleneck. One startling statistic is the dramatic increase in average
queue time at the iipa. A quick look at the gantt chart shows that in any week, the machine is
nat fully loaded, hence why are the orders waiting? Since 1SIS explicitly chooses a time for
each operation, orders sit in the queue even though the machine- may be idle. Such a
decision may be usefyl if the machine is operated only when enough orders exist to be
processed. But such is not the case here. Ali the orders which have large queue times in
front of the ilpa were scheduled in the forward direction from their arrival date. A due date
constraint was applied to each of these orders. This constraint biased the system towards
chosing reservations as close to the order's due date as possible. Hence, when ISIS
generated alternative reservations for the ilpa, earlier reservations were poorly rated when
compared to reservations which were closer to the order’s due date. This is a symptom of
forward scheduling from an order's arrival date which provides more work in process time
then ISIS requires.

The following summarizes the utilities of the constraints in experiment 4. Note that the class
of operation time bound constraints has been added to refleet the output of capacity analysis
to resource analysis.
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Class Average Utility
Priority Class SD
Stability 76 1.0
op time bound 76 1.1
Wip 9 1.5
Attribute-Preference 18 1.08
Q-Constraint 18 1.0
Priority Clags SO
Stability 160 1.0
Op time bound 160 1.1
Due-date 19 0.85
Attribute-Preference 38 1.09
Q-Constraint 38 1.0
Priority Class ST
Stability 118 1.0
Op time bound 118 1.1
Due-date 14 0.71
Attribute-Preference 28 1.1
Q-Constraint 28 1.0
Priority Class SH
Stability 366 1.0
Op time bound 368 0.85
Due date 43 0.61
Attribute-Preference 86 1.09
Q-Constraint 86 1.0

Table 6-13: Constraint Satisfaction Summary for Experiment 4

SD's constraints appear acceptable to good, especially wip. ST lots are acceptable. Both
SO and SH have poor due date utilities. This confirms what we have already seen in the
earlier statistics.

6.2.4. Experiment 8 Analysis

Experiment 8 was created to deal with a different manifestation of the horizon effect. The
eager reserver rule (section 5.5.2.2) generates alternative states for each block of time
available, reserving the earliest time in that block. itis not known at the time whether this is a
good decision due to the horizon eftect. There could be a bottleneck, hence choosing a later
time in a block, and arriving later into the bottleneck would reduce its queue time. The wait
and see reserver implements this approach. it does not choose a reservation in a block until
the search is finished. It then chooses the latest time possible for each operation"’2

The gantt chart for experiment 8, when compared to experiment 4, shows a general
compression of reservations, hence, a more even utilization of machines during a smaller time
period. Both the ffs* and fts* machines continue to be bottienecks.

27ig is the third version of ISIS constructed as described in chapter 5.
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Figure 6-4: Expsriment 8 Gantt Chart
The slatistics for experiment 8 are:

STATISTIC SO SO ST SH All
Number of lots 9 19 14 43 85
Tardy lots 0 1 0 16 17
Avg. Tardiness 0 0.56 0 40.67 20.7
Avg. Lateness (finiching) -1.13 -19.93 -5.61 27.89 8.61
Avg. Lateness (starting) 263.81 155.94 68.39 149.46 149.66
Avg. WIP 32.18 119.98 136.21 276.29 192.4
Avg. Processing Time 30.86 30.57 28.32 28.93 29.4
Avg. Queute Time 1.31 89.41 107.68 247.36 162.99
Avg. % Processing Time 96.04% 32.93% 24.16% 13.04% 28.11%

Table 6-14: Experiment 8 Statistics

The effect of the wait-and-see reserver is to reduce the number of states generated when in
the presence of reservations for orders of lower priority. Instead of creating multiple
reservations which bound the existing reservation(s), it creates a single reservation with
spans both the available time and the time reserved by lower priority orders. Since, in these
tests, orders are scheduled in priority order, there will not be any reservations for orders of
lower priority encountered during scheduling. Hence, the primary difference in the search
space between experiment 4 and experiment 8 is the compression of reservations to reduce
WIP, leaving fewer holes in a machine's queue,
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- The machine utilization and queue times for experiment 8 are:

Machine % Utilization Avg. Qucue Time
ffs* Go 0

fss*® 30.8 42.2

fps* 31.8 6.9

fts* 89.6 11.2

ilpa 12.4 56.3

Table 6-15: Machine Utilization for Experiment § (makespan: 588.9 days)

Makespan has been reduced by abcut 148 days when compared to experiment 4. This
reduction is due to the wait and see reserver pulling reservations closer to an order’'s due
date. With the reduction of makespan, machine utilization also increases. A noticeable
deviation is the decrease in average queue time at the fis* (from 65.9 in experiment 4). This
reduction is also explained by the wait and see reserver. Since the operator, when operating
in the forward direction, chooses as late a reservation as possible, then orders tend to arrive
in more of a "just in time" fashion.

The following summarizes the utilities of the constraints in experiment 8:

Class Number Average Utility
Priority Class SD
Stability 76 1.0
Op time bound 76 11
P Wip 9 1.47
Attribute-Preference 18 1.08
Q-Constraint 18 1.0
Priority Class SO
Stability 160 1.0
Op time bound 160 1.07
Due-date 19 0.93
Attribute-Preference 38 1.09
Q-Constraint 38 1.0
Priority Class ST
Stability 118 1.0
Op time bound 118 1.1
Due-date 14 1.03
Attribute-Preference 28 1.1
Q-Constraint 28 1.0
Priority Class SH
Stability 366 1.0
Op time bound 366 0.81
Due date 43 0.60
Attribute-Preference 86 1.09
Q-Constraint 86 10
Table 6-16: Constraint Satisfaction Summary for Experiment 8

SD statistics stay the same. Both SO and ST have improved due date utilities. Work in
process constraints were not include in the SO, ST, and SH classes. If they were, they would
show a marked improvement in utility due to the reduction in queue time.

Experiments 1 and 8 were tested on an additional 9 sets of test orders, randomly generated
based on the same statistics. The following summarizes the performance of experiment 8:
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STATISTIC Min Max  Mean Std
Tardy lots 14 16 18.4 4.27
Avg. Tardiness 19.33 59.36 328 11.5
Avg. Finishing Lateness 1.55 51.09 23.65 13.7
Avg. Starting Lateness 140.66 194.2 170.27 17.17
Avg. WIP 147.31 186.9 173.25 11.63
Avg. Processing Time 29.32 30.83 30.06 0.52
Avg. Queue Time 117.97 156.54 143.19 11.28
Avg. % Processing Time 32.03% 38.97% 36.51% 1.92
Table 6-17: Experiment 8 Average Statistics

R

6.2.5. Experiment 12 Analysis ‘ hr

N

Many of the problems in experiments one through eight stem from the forward scheduling of
ST and SH-orders. Poor decisions at the beginning of the schedule lead to bottienecks at the S
end. The purpose of experiments nine through twelve was to determine the effect of

! scheduling all orders backward from their due date. The following is the gantt chart for
experiment 12:
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Figure 6-5: Experiment 12 Gantt Chart
The statistics for experiment 12 are:
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STATISTIC sD SO ST SH All
Number of lots 9 19 14 43 85
Tardy lots 0 0 0 0 0

Avg. Tardiness 0 0 0 0 0

Avg. Lateness (finishing) -1.13 -30.27 -67.4 -79.44 -58.17
Avg. Lateness (starting) 263.81 218.66 67.24 210.23 194.23
Avg. WIP 32.18 46.92 75.36 108.19 81.04
Avg. Processing Time 30.86 30.63 30.12 29.08 29.79
Avg. Queue Time 1.31 16.29 45.24 79.11 51.25
Avg. % Processing Time 96.04% 79.25% 49.56% 55.31% 64.03%

Table 6-18: Experiment 12 Statistics

Backward scheduling of ail lots vastly improves the above measurements, except for SD
orders which were scheduled backwards in experiments 1 through 8. The wait and see
reserver makes sure all reservations are as close to the delivery date as possible.

The machine utilization and queue times for experiment 12 are:

Machine % Utilization Avg. Queue Time
fis* 51.4 0

fss* 26.4 0.1

fps* 27.3 0.7

fts* 76.8 1.5

ilpa 10.6 429

Table 6-19: Machine Utilization for Experiment 12 (makespan: 687.4 days)

in comparison to experiment 8, the makespan has increased almost 100 days. This implies
that backward scheduling is able to meet it3s due dates by utilizing id!e time earlier in the
scheduling period. Thus start times are pushed back earlier than «hat is found in experiment
8.

The following summarizes the utilities of the constraints in experiment 12:
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Class Number Average Utility

Priority Class SD
Stability 76 1.0
Op time bound 76 1.1
Wip 9 1.47
Attribute-Preference 18 1.08
Q-Constraint 18 1.0

N

Prionty Class SO
Stability 160 1.0
op time bound 160 1.07
wip 19 1.22
Attribute-Preference 38 1.09
Q-Constraint 38 1.0

Priority Class ST
Stability 118 10
Op time bound 118 0.96
Wip 14 1.07
Attribute-Preference 28 1.1
Q-Constraint 28 1.0

Priority Class SH
Stability 366 1.0
Op time bound 365 0.95
Wip 43 1.18
Attribute-Preference 86 1.09
Q-Constraint 86 1.0

Table 6-20: Constraint Satisfaction Summary for Experiment 12

Both SD and SO classes of lots show good performance in satisfying its constraints. ST and
SO classes are also good. but the wip utility is below 1.0. This is due to lack of capacity in the
bottieneck machines.

6.3. Series 2: Experimental Analysis

A major factor in generating good schedules in the first series cf experiments is the ability to
"work around” the bottienecks. In the experiments where forward scheduling and backward
scheduling were mixed, the capacity analysis level was required to detect bottienecks before
detailed scheduling is performed. When all scheduling was backward, sufficient lead time
was required to spread the load.

in this series of experiments, the bottleneck problem is alleviated by doubling the capacity of
the fts* machine. Except for this model alteration, the experiments are equivalent to those in
series 1. Only one experiment is analyzed here.

6.3.1. Experiment 8 Analysis

This experiment i~ equivalent to the series 1 experiment. The gantt chart for experiment 8,
when compared tc¢ ls equivalent in series 1 shows a major compression of raservations,
hence, a more even utilization of machines during a smaller time period.
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The statistics for experiment 8 are:

STATISTIC
Number of lots
Tardy lots

Avg. Tardiness

Avg. Lateness (finishing)
Avg. Lateness (starting)

Avg. WIP

Avqg. Processing Time
Avg. Queue Time
Avg. % Processing Time
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L) 00 0

Figure 6-6: Experiment 8 Gantt Chart
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267.49 192.5 60.76 123.72
28.93 74.91 71.93 250.61
28.71 27.16 26.9 27.43
0.22 47.75 45.03 223.18
99.3% 46.68% 57.88% 15.78%

Table 6-21: Experiment 8 Statistics
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Processing time for SH is still quite small compared to its WIP time. This can be alleviated

by scheduling SH orders backward.

The machine utilization and queue times for expariment 8 are:
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Machine

fis*
fss*
fps*
ﬁs.
ilpa

Makespan has been reduced by about 120 days when compared to experiment 8 in series 1.
The reduction is obviously due to the additional capacity in the main bottleneck machine.

The following summarizes the utilities of the constraints in experiment 12:

Priority Class SD

Priority Class SO

Priority Class ST

Priority Class SH

Table 6-23: Constraint Satisfaction Summary

The utitilities for these constraints are similar to those found in experiernent of series one.
The only significant difference is that in the SH class, which contains the majority of lots, the
due date utility has increased by about 0.15. Hence, the due date is being better met with the
increased capacity.

Class

Stability
Op time bound
Wi

]
Attribute-Preference
Q-Constraint

Stability

op time bound

due date
Attribute-Preference
Q-Constraint

Stability

Op time bound

Due date
Attribute-Preterence
Q-Constraint

Stability

Op time bound

Due date
Attribute-Preference
Q-Constraint

% Utilization
75

38.5

398

58.6

156.5

Table 6-22: Machine Utilization for Experiment 8 (makespan: 471.5 days)

Number

76
76
9

18
18
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6.4. Conclusion

This chapter describes the experimentai analysis of ISIS as a job-shop scheduling system.
The difference in performance between experiments 1 and 8 shows that in very large search
spaces where the evaluation function is a poor estimator of future success of the search path,
a hierarchical approach is required. The hierarchical approach is a heuristic look ahead
procedure which examines a projection of the search space. The output of a level is a set of
constraints on the search at the next level. Using this approach, ISIS performed well.

The major difficulty with testing ISIS is that it contains too many variables. The number of
tests that should be performed is far beyond that which could be performed. Convergence of
1SIS's performance can be enhanced by focusing on the more salient parts such a scheduling
of goals and time constraints. But in the end, not all of the utilities, and importance ievels wil
ever fully be examined, and their sensitivity evaluated. Never the less, testing is still
continuing in which a single variable, such as a constraint’s utility is altered while others are
held constant. Another type of testing that needs to be performed, is the iterative effect of
post-analysis. Once the implementation of constraint interaction diagnosis is completed,
tests will be performed to determine the convergence of schedules through this form of
iterative scheduling.
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I Chapter 7
X Observations and Conclusions

Summary

The contributions of this thesis are in three areas: representation, constraint-
directed search and job-shop scheduling. in the representation area, a more
complete semantics for the modeling of organizations is provided which includes:
states, acts, time, causality, multi-level representation, and support for discrete
simulation. In the area of search, ISIS introduces a number of new concepts:

e A general representation for constraints with particular attention paid to the
representation of relaxations, interactions, and cbligations.

e Constraint-based pre- and post-search analysis to bound the solution
space before performing search, and diagnose poor constraint decisions at
other levels.

e The generation and evaluation of constraint relaxations during the search
process.

¢ The resolution and differentiation among constraints in evaluating states in
the search space.

e Hierarchically constrained search. A level in the hierarchy communicates
only constraints in order to guide search at the next level.

The contribution to job-shop scheduling made by this thesis is that it provides, for
the first time, a system which can represent and consider all the domain
constraints during the construction of a schedule. And do so in a reasonable
! amount of processing time. It also provides incremental scheduling in reaction to
‘, ) changes in the plant's status, and suggests alternative schedules when constraints
., cannot be satisfied.
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7.1. Introduction

In this chapter, some observations of I1SIS's performance are made, and following the
contributions of this dissertation are summarized. Lastly, a description of future research is
_provided, much of which is currently being pursued.

7.2. Observations

7.2.1. Tactical vs. Strategic Decisions

Constraints can be used to represent both tactical and strategic information. Tactical
information corresponds to constraints that provide specific knowledge of what can or cannot
be done on the shop floor. For example, precedence constraints define possible operation
sequences. Enabling constraints define what materials must be available before an operation
can be performed on a machine. Reservations define possession of objects by other orders.
Tactical decisions are implicitly made by the search process. As the search is performed
states are generated which represent alternative tactical decisions based on the above
constraints.

Different levels of strategic information are also represented by constraints. Crganizational
goal constraints can be viewed as strategic in nature; they provide an overall rating of a
schedule without restricting individual decisions. Scheduling goal schemata also provide
strategic information, in that they prioritize the constraints, which in turn affect the choice of
schedules.

A problem with experiment 1 is that its tactical decision making is generative; it elaborates
the space of alternatives, and chooses the most highly rated. The "generate and test”
approach, requires that the number of alternatives be small, so that the search space is of a
reasonable size. Better tactics could be used if the operators did less generation and more
analysis. For example, if it was determined that a certain machine was a bottleneck, an
operator could be added that would generate alternative shifts for that machine or work area
only. If the bottleneck intormation was made available by some hierarchical analysis, or by
the post-search analysis, it would be simple enough to add to the pre-search rule-based
knowledge to add another operator to the solution sbace search.

The incorporation of capacity analysis in experiment four and reservation selection in
experiment eight succeeded in operationalizing strategic constraints into tactical constraints.
Operationalization of constraints is performed by the creation and communication of
constraints from one level to the next. General time constraints are strategic in nature. These
constraints are used to guide the capacity analysis, whose results are time bounds on
individual operations at the detailed scheduling level. Hence, a strategic due date constraint
which simply states that due dates should be met, is used to guide and analyze the capacity
analysis. This resuits in the generation of operation time bound constraints which is the
operationalization of the due date constraint at a tactical lgvel.
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i 7.2.2. Constraint Representation ¢

The scheduling of a job-shop is defined here as a constraint-directed search process.
Hence, the representation of constraints is a focus of this work. The first question to be asked
is whether the representation covers the set of possible constraints? By tying the
representation of constraint types to the knowledge representation system (SRL) primitives,
the representation guarantees that anything that can be represented in SRL, can have a ’
constraint associated with it. Hence, ISIS provides constraint representation at the lowest,
structural level. It is then up to the user to define higher level constraints, examples of which
can be found in section 4.9,

A second important facet of ISIS's approach toc constraint representation is the explicit
representation of relaxation. Any theory of constraint-directed reasoning must include a
specification of how to relax constraints. The specification of relaxation incorporates both
predicate and choice set specifications of alternatives with preferences specified as utilities.
Hence, ISIS provides the conceptual primitives to represent a variety of constraints, and more
importantly their relaxations and associated utility. This approach subsumes the value set
approach found in CONSTRAINTS (Steele, 1980), and the predicate bounding approach
X found in MOLGEN (Stefik, 1981a).

It is interesting to note, that the combination of a schema constraint and its relaxations is
equivalent to a schema template which can be used for matching in the knowledge base. The
incorporation of utilities in the relaxations provides a simple measure of match performance;
bridging the gap between binary matching systems and betief-based reasoning systems.

A third facet is the integration of a constraint's declarative and procedural interpretation.
Each constraint contfains both its attributiva/structural definition and its procedural
: interpretation. This has proved useful as less of iSIS is hidden in lisp proceduras; and even
: those are placed in the modei and subject to the inheritance mechanisms available in SRL..

7.2.3. Obligation

The concept of obligation in ISIS takes many forms. One of its primary forms is the
importance of a constraint. The most common form found in Al, being synonymous with the
coelficient associated with a term in a heuristic search evaluation function. Much of the
generation of evaluation functions is an art, though Samuel (1963) has demonstrated
optimizing behavior through machine learning techniques. And Berliner (1973; 1980) has
noted that better search behavior is exhibited when coefficients can vary slowly with context.

. ISIS departs from this paradigm in a number of ways. First-there does not exist a single,
global evaluation function. The function is dynamically determined through the constraint
resolution mechanism. Each constraint i3 a term of the newly defined evaluation function. It
can be argued that all of the constraints form the evaluation function, but those not in the
resolution set have a zero coefficient. As more constrainis are resolved, their coefficients
become non zero. But due to scheduling goals. each constraint in an importance partition
has its importance reduced as the number of constraints in the partiticn increases. Mora
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interestingly, a scheduling goal resuits in differing constraint importance across classes of
orders. Hence, the evaluation function changes depending on one's perspective (i.e., the
order being scheduled). Berliner's results imply that a closer examination is required to
further understand how ISIS's search behavior is affected by this "different” form of an
evaluation function.

The time and causality primitives extends the notion of obligation from simple attachment of
a constraint to a schema to a deeper understanding of duration and enablement. And where
these primitives leave off, the simple context checking mechanism of a constraint provides a
procedural loop hole for testing arbitrary conditions of applicability.

One of the most interesting concepts of obligation is that arising from inconsistencies. ISIS
admits the possibility of inconsistent constraints being created such as two differing due
dates from two sources. The removal of such inconsistencies relies upon the explicit
representation of authority relations to determine which constraint has precedence.

7.2.4. Modes of Relaxation

ISIS provides two modes of relaxation: analytic and generative. Analytic relaxation is the
examination of the state of the environment to determine which of the existing constraints
should be relaxed. The result of this analysis is the explicit relaxation of one or more
constraints. For example, the capacity analysis level can detect bottlenecks. As a result,
certain constraints such as shifts and alternative routings can be relaxed in two senses: either
an operator can be created that generates the relaxation during the solution space search, or
the utility of the relaxation, such as an extra shift, may be increased. Analyti¢ relaxation may
also be performed in the pre- and post-analysis within a level.

Generative relaxation is built into the operators of the search space. An operator, by
generating one or more new states in the schedule space either explicitly or implicitly
generates relaxations. The choose-machine operator generates alternative machines for a
given operation. The chooase-machine operator is the generator associated with the machine
discrete choice constraint. But an operator such as choose-reservation is the cemposite of
more than one constraint. By choosing aiternative queue positions, it may affect work in
process constraints, due date constraints, queue ordering preferences, cost preterences, etc.

The issue being dealt with in this two step approach to relaxation is search complexity. The
number of constraints, and their relaxations are large, making it impossibie to consider all
alternatives in reasonable amount of time. Hence, the search space analysis bounds the size
of the search space, making the search manageable by methods such as beam search.

The next issue concerns the guality of the analysis. Section 5.1, makes the case that the
analysis should be based on search space size, and constraint relevancy. But that the actual
implementation is more "simplistic” in that it is a set of rules representing scheduling
expertise. A first step towards a deeper analysis is the utilization of constraint interactions to
determine which concstraints should be relaxed, and at what scheduling !evel the relaxation
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should be performed. This is a post-analytic approach which is able to determine how
decisions at a lower level have been affected by higher level decisions, ancd the direction of
refaxation that should be performed at the higher level.

7.2.5. Integrating Planning and Scheduling

It would seem that ISIS cleanly separates the task of scheduling from planning. By pre-
computing the graph of possible routings through the factory. the planning has been
completed before scheduling begins. But this is not quite true. During scheduling, the choice
ot an operation or machine can be eliminated by a physical constraint such as one that
measures the length of the blade and compares it to the size of the machine. Hence, the line 4
separating scheduling from planning is fuzzy. The generation cf alternative next operations ':
could have been accomplished in a "planning” sense during the search cf the solution space.
And could be accomplished by substituting another "choose-operation” operater.

Uitimately, we would like to have ISIS carry out the planning step, resulting in a system that
could perform "generative process planning”, as it is called in manufacturing engineering.
This would require much more knowledge of the part geometries and manufacturers
descriptions of what type of processes each machine in the factory could perform. This is
analogous to the problem addressed by Stefik (1981a; 1981b).

7.2.6. Search Anchoring

in the previous chapter, the issue of anchors in the search space was discussed. Both l
end-anchored, and opportunistic anchoring were discussed as search foci. It was decided
that ISIS perform either backwards or forward search from the end or beginning anchors.
The decision was based on the type of knowledge that ISIS currently receives in the form of
constraints. ISIS could reason opportunistically from anywhere, that is, from the islands of
certainty designated by constraints. But, currently, it does not have constraints which provide
that type of information. Altering ISIS to perform an oOpportunistic search process would
require adding rules to the pre-search analysis which would determine the initial islands of
certainty, much like the WOSEQ module generated initial islands for Hearsay-il (Erman et. al.,
1980). The beam search would have to be replaced by one similar to Hearsay-Il which would
extend only the highly rated islands. The transformation to an opportunistic approach will be

. made in ISIS-Iil.

In the current version of ISIS, the beam width is held to a constant. The seiection of the
beam width is another investigation of tradeoffs of time versus quality of schedule. Studies
should be performed to determine what is a reasonable beam width; whether there is a
relation between beam width and the constraints in the environment; Or whether the width
should be dynamically determined by the some analysis of the current states in the beam.
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7.2..7. System Efficiency

A maijor thrust of this research is to discover a thecry of constraint-directed reasoning which
is able to operate with near realtime performance. This goal has played a major part in
deciding the types of search that ISIS is to use. The version of ISIS used in our experiments
was written in FRANZ-LISP and run on a DEC VAX 11/780. Moderate effort was made
towards increasing the efficiency of the search code. but much remains to be done. Mever
the less, statistics show that ISIS does not take a great deal of time to schedule a single lot.
Table 7-1 depicts the average processing time to schedule a lot, including garbage collection,
for each of the experiments in series 1.
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Table 7-1: Average CPU Processing Time (sec)

Much of this time is spent manipulating schemata; as many in the field have discovered,
knowiedge representations are expensive to use in both time and space.

Table 7-2 depicts the number of states searched, on the average, for each lot scheduled in
an experiment in series 1. Compared to the number of states generated in chess games, ISIS
generates very few. The combination of better constraint knowledge and the larger number
of states generated combine to make experiments 8 and 12 better than experiment 1.

Qur expectation is that the combination of more efficiant software, and faster hardware will
vastly improve ISIS's search efficiency, allowing ISIS to realize even better schedules.

OBSERVATIONS AND CONCLUSIONS




MARK S. FOX PAGE 143

N
e
f

8

S
+
J

W W W ah
o
Qo

a
Q
J

ve. States per Search
w
N
Q

A
W
8

280} o
260}
240¢
220

4 5 6 7 8 9 10 11 12 13
Version

o
-
NE ¢
@

Table 7-2: Average Number States per Search

7.3. Contributions

The focus of this thesis has been the representation of and reasoning with constraints in the
job-shop scheduling domain; with the added meta-constraint that it pertorm in near realtime
required for the dynamic control of a factory.

Constraint Categorization. The first contribution is the progression towards a clearer
definition of constraints. The categorization of constraints as range, relation, and schema
(section 4.2), coupled with predicate and choice relaxation types (saction 4.3) explicates what
is being constrained, and their alternatives. This representation unifies the somewhat
disparate approaches found in other constraint systems, without altering their approaches to
reasoning with constraints. But in {SIS-ll the definition of constraints extends beyond the
above to consider constraint attributes found to be important in "real-world" tasks.
Preferences amongst relaxations, and the differentiation (section 4.4) of constraints on a per
order basis, guides ISIS-II's decision making. The definition of constraint interactions
{section 4.5) enables ISIS-II to perform a better diagnosis of its schedules, and the elaboration
of the different types of obligation (section 4.6) enables ISIS.|l to determine the applicability of
a constraint, and resolve inconsistencies amongst them.

Search Pre-Analysis. The second contribution is the explicit pre-analysis of the search
space in order to define its bounds. Because of the innate size of the search space, ISiS-I
must dynamically determine, for each order, based on the problem that it is trying to solve.
The current analysis of the search space is rule-based. A better solution would be to perform
the analysis of the space/time tradeoffs.
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Constraint Strengthening and Relaxation. The third contribution is the methods by
which ISIS-ll can dynamically strengthen or relax constraints. The problem space analysis
effectively partitions the space of constraints into those that are strengthened and those that
can be relaxed. The analysis is based on attributes of the order, the previous scheduling
history of the order, and on the current state of the plant. This analytic approach to constraint
strengthening and refaxation admits knowledge from other sources such as a capacity
planning system. The generative approach to constraint relaxation entails incorporating into
the operators that define the search space, the abiilty to generate directly or indirectly
relaxations cf constraints. ’

Constraint Resolution. The fourth contribution is the approach to constraint resolution.
That is, determining the set of constraints that are to be.used to rate a state in the solution
space. ISIS-Il divides constraint resolution into three steps, first determining the set of
constraints that are locally defined by local presence in the model, hierarchical imposition,
lateral imposition, or exogenous imposition; constraints that are globally defined by presence
in the search path; or relatively resolved by prioritizing them according to existing scheduling
goals. These methods of resolution introduced the concept of invariant and transiant
constraints, and the goal-directed dyr.amic prioritization of constraints.

Levels of Representation. A fifth contribution is the extension. of scheduling to multiple
levels of representation. Though reasoning in this manner is weil known, the key difference
here is the use of constraints as the means by which information is communicated between
levels. The allows the degree of coupling of levels to vary accordmg to the constraints’
relaxations and their preference.

Constraint-Directed Diagnosis. A sixth contribution is the constraint-directed diagnosis
proposed in section 5.5.3.2. A problem with search systems, especially multi-level search
systems is the poor ability to diagnosis probiem areas in their search sgace, and relate them
to specific decisions at higher levels. While Fahiman's (1974) error analysis technique in
robot planning, and dependency-directed backtracking are forms of diagnosis in search, the
approach proposed in ISIS-Il links diagnosis directly into the representation of constraints,
hence formalizing the knowledge: the sensitivity of interaction and the direction that change
should take piace.

Knowledge Measurement. A seventh contribution is the steps taken towards the
measurement of the effects of incremental additions of knowledge both within a search level
and at different levels of search. While the current results are minimal, experiments continue
to be performed.

Pragmatic Scheduling. And the eighth, and last contribution, is to management science
and industry in general. 1SIS-ll represents the first step forward in the deveiopment of a near
realtime job-shop scheduling system that can incorporate, reason with and relax a large and
expanding set of constraints that define the environment.
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7.4. Future Research

Research tends to raise as many questions as it answers. [SIS-il is no different. It would be
approgriate to note at this time that the -1l on the end of ISIS was deliberately chosen. ISIS:I
was a throw a way system, more 2 vehicle to understand the job-shop scheduling problem
than anything else. ISIS-Il was designed in parallel with ISIS-ll. The purpose of ISIS-Il being
to investigate the representation and relaxation of constraints with a beam search style
search algorithm. The choice of a beam search approach was made with full knowledge that
a more opportunistic reasoning approach could possibly be better, but would aiso increase
the complexity of the research. I decided that ISIS-Ill would explore the
opportunistic/distributed reasoning questions, while restricting 1SIS-1l to the basic guestions
on representation, resolution, and relaxation. Within this framework, ISIS-I! raised the
following issues which should serve as future research.

The first problem is that the development of constraints, their utilities, and their priorities is
very much an art. Efficacy of a constraint representation cannot be determined other than by
continued analysis of system performance. One of the few systems that has attended to this
problem has been PROSPECTOR (Gaschnig, 1980). A sensitivity analysis was performed on
the rule-base to determine the effects or rules and their beliets. At least two approaches can
be taken towards solving this problem. The first would be to develop a system by which users
could state preferences, and the system derive utility functions and priorities. The second
would be a machine learning aporoach. By coupling sensitivity analysis with feedback onits *
performance, the system could alter its goals and utilities in a more intelligent manner. The
tormer approach is Guite difficult, as exemplified by the work in mathematical psychology in
dealing with inconsistent preferences and beliefs.

ISIS-Il was designed to incorporate a multitude of constraints, but the decision to use a
beam search anchored at either the initial or goal state and cid not allow for it to take
advantage of "islands of certainty” in the solution space. ISIS.lif will have the ability to search
from any island in an opportunistic manner.

ISIS-11 also allows the incorporation of constraints from other, hierarchical analyses such as
capacity planning. Though a hierarchical analysis system was constructed, it was
incorporated using simple top down control. An oppoertunistic form of control, such as found
in Hearsay-1l would require implementation of the previous suggestion. Again, this capability
will appear in ISIS-Ill. Secondly levels of representation should be added, to incorpcrate other
perspectives on the scheduling state.

Currently, 1SIS performs compiete scheduling of all lots that it is aware of. In reality, only
detail schedules need to be developed for lots which are to be delivered in a short time frame.
For lots which are not required for many months or years, a simple capacity analysis would
suffice. This raises the issue of to what level of detaii should ISIS perform its scheduling,
Ideaily, the level of detail should reflect the level of certainty the systern has about the plants
future states.
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The issue of complexity and the constraint of providing a reasonable response time,
resulted in the formulation of the search space analysis step in the scheduling process. This
analysis is vital to the system in that it bounds the space of schedules. !f the analysis is poor,
than the schedules are poor. Currently, ISIS-ll performs a rule-based analysis of the problem
space. The rules are derived from both experts and myself. Ultimately, the system will have to

‘take a more analytical approach to the analysis of the constraints, their utilities, and their
effect on the size of the search space. A first step towards this is the interaction diagnosis
proposed in section 5.5.3.2.

Lastly, ISIS-ll is really a machine centered scheduling system. Resource requirements are
determined by operation/machine routings. There is no explicit attempt to smooth resource
utilization, other than noting their inavailability and choosing an alternative schedule. A next
step would be to develop a system that would smooth the usage of all resources in parallel.
This is a goal of ISIS-lIl. The approach being investigated there is to create a distributed
system. One scheduler for each resource. Each processes schedules its own resource
utilizing both its own local constraints and goals, and the constraints communicated to it from
other processes. If a machine scheduler requires a tool, it communicates that need as a
constraint to the tool scheduler. The system iterates, passing constraints at each iteration.
Relaxing some, strengthening others until the group of schedules converge.

OBSERVATIOMS AND CONCLUSIONS
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Appendix A
Test Constraints

The following is the list of constraints which were used in both series 1 and series 2
experiments.
Preference Constraints

Preference constraints were used which covered preferences on how to order lots in a
queue according to physical characteristics, and choice of machine for an operation, again
according to physical characteristics.

q-hand prefer to sequence together in a machine’s queue turbine blades of similar hand.
true-utility: 1.1
false-utility: 1.0
g-root prefer to sequence together in a machine’s queué turbine blades of similar root.
true-utility: 1.1
false-utility: 1.0
tength preferences different machines had preferences for the length of a turbine blade
they would work on.
true-utility: 1.1
false-utility: 1.0
lug preferences different machines had preferences for the number of lugs on a turbine
blade they would work on.
true-utility: 1.1
false-utility: 1.0
Continuous Constraints

Continuous constraints were used to constrain schedules to meet due date, work in process
, and queue stabiiity goals. The utility for these constraints are specified as a piece wise linear
equation in the form of x-y pairs.

due date Each priority class had its own due date constraint providing a utility which varied
with how early or late an order was. The due date constraint calculates a
due date for a lot's partial schedule based on the amount of time in the

TEST CONSTRAINTS
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plant so far, and the amount of time, theoretically, till completion. X is the
number of days after the due date the order is expected to be shipped.

utility: Class X Y
FO 0 1.3
7 0.1
CR 0 1.3
7 0.1
SD -14 1
0 1.2
7 0.1
SH -28 0.2
0 1.2
14 0.2
S0O-28 0.2
0 1.2
14 0.2
ST -7 1
0 1.1
7 1

queue stability determined the utility of pre-empting another lots reservation for a machine
when the lot is close to setup. X is the number of days left til! the pre-
empted lot is to be run,

utility: X Y
-1 0
0 0.1
7 1

wip determines the acceptability of the amount of time the lot is spending in process. The
utility returned is a function. of the number of days in process and the
theoretical minimum the ot shouid spend if the shop was empty.

Discrete Choice Constraints

next operation Each operation had a list of next operations to choose from. The utility of
each choice was uniform and was not considered in testing.

machine Each operation had a list of machines to choose from. The utility of each choice
was uniform and was not considered in testing.

tools Each operation had a list of tools to choose from, The utility of each choice was
uniform and was not considered in testing.

TEST CONSTRAINTS
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The following lists the test lots used in version 1 of each experiment in series cne and two.
They were generated according to the distributions described in section 6.1. (Other test data
was generated from the same distributions tor the further testing of experiments one and
eight in series one.) Each lot has a priority class, a requested start date in the form of a triple:
(week day hour), a requested due date, and the number of turbine blades in the lot. The lots
were then ordered by start date. i.e., the time the order became known te the nlant, and
scheduled in that order.

Lot
tlot-3-3
tiot-4.28
tiot-4-13
tiot-3-4
tiot-3-10
tlot-1-14
tlot-3-28
tiot-5-3
tiot-2-3

Priority
SD
SD
SD
SD
SD
SD
SD
SD
SD

Ship Direct Lots

Start date Due date
(58 00) (11000)
(6400) (11400)
(€E400) (11500)
{6400) (10900)
(6500Q) (11300}
{(7300) (10400)
{(7500) (11300)
(7700) (11800)
(7900) (10500)
Table B-1: SD Lots
TEST DATA

blades
186
175
168
204
191
139
167
202
194
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order
tiot-4-18
tiot-4-29
tiot-4-34
tiot-1-4
tiot-4-3
tlot-3-5
tlot-5-28
tiot-3-17
tiot-3-21
tiot-3-27
tiot-2-19
tiot-1-12
tiot-6-18
tlot-5-24
tiot-4-21
tiot-4-2
tiot-2-15
tiot-6-16
tiot-3-29

Priority
SO
SO

8888688888

Service Order Lots

Start date

(6300)
(66 00)
(6600)
(6600)
(67 00)
(6800
(6900)
(6900)
(7000)
{7600)
(7000)
(7000)
(7400)
{7400)
(7400)
(76 00)
(7700)
(7800)
(7900)

Due date
(11400)
(11500)
(116 00)
(10200)
(11700)
(10900)
(11900)
(11200)
(11200)
(11300)
(1C500)
(10000)
(12300)
(11900)
(11500)
(116 00)
(10500)
(12500)
(11200)

Table B-2: SOLlots

TEST DATA

P e

blades
161
163
121
151
123
121
202
140
120

134
181
165
198
134

164
174
155
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order
tiot-1-5
tiot-1-3
tiot-1-2
tiot-1-11
tiot-1-16
tiot-1-8
tiot-2-17
tiot-2-13
tiot-2.9
tiot-2-14
tiot-2-6
tiot-3-14
tiot-3-2
tiot-3-30

Priority
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST

Stock Lots
Start date Due date
(7100) (10100)
{(7100) {10100)
(7100) (10100)
(7200) (10200)
(7300) (1030 0)
(7400) (10400)
(7700) (1070 0)
(77 00) (10700)
(7700) (10700)
(7800) (10800)
(7800) (10800)
(7900) (1090 0)
(7900) (10900)
(8000) - (11000)

Table B-3: STLots

TEST DATA

PAGE 159

blades
155
190
152
197
169
190
168
202
165
176
154
207
160
140
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order
tiot-1-17
tlot-5-18
tiot-2-10
tiot-4-10
tiot-1-7
tlot-1-6
tiot-2-12
tiot-7-5
tiot-6-6
tiot-5-12
tiot-3-12
tiot-2-8
tiot-1-15
tiot-5-17
tiot-2-2
tlot-1-9
tiot-7-14
tiot-6-19
tiot-6-5
tiot-4-4
lot-7-7
tiot-8-17
tiot-2-18
tlot-6-14
tiot-9-30
tiot-6-8
tlot-3-8
tiot-4-35
tiot-4-6
tiot-11.17
tiot-7-13
tlot-11.7
tiot-7-4
tlot-7-6
tiot-4-37
tiot-4-22
tiot-3-31
tiot-4-24
tiot-4-7
tlot-9-31
tiot-4-5
tiot-12-6
tiot-6-17

Priority
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH
SH

Shop Order Lots

Start date

(4100)
(4500)
(47 00)
(4900)
(4900)
(4900)
(5000)
(5100)
(5100)
(5100)
(5200)
(5200)
(5300)
(55 00)
(5500)
(5500)
(56 00)
(57 00)
(5700)
(5900)
(6100)
(6200)
(6400)
(6600)
(68 00)
(6800)
(6900)
(7100)
(7100)
(7200)
(7200)
(7300)
(7300)
(7400)
(7400)
(7400)
(7400)
(7500)
(7500)
(77 00)
(7800)
(7900)
(7900)

Due date
(10100)
(12100)
(10800)
(11600)
(10000)
(10100)
(106 00)
(126 00)
(12300)
(11900)
(11100)
(106 0 0)
(10400)
(12000)
(108 00)
(10300)
(127 00)
(12400)
(12200)
(11400)
(12800)
(13400)
(1080 0)
(12300)
(13500)
(12500)
(11300)
(11709)
(116 00)
(14500)
(126 00)
(14700)
(12900)
(12700)
(11500)
(11600)
(11000)
(11400)
(11700)
(136 00)
(11500)
(14900)
(12200)

Table B-4: SHLlLots

TEST DATA

blades
164
198

200
124
208
147
188
195
125
126
180
151
122
189
166

140
144
156
202
150

130
157
210
163
133
136
162
146
165
120
122
178
192
193
202
176
196
122
170
164
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Appendix C
Series 1 Experiments

This appendix documents the results of the experiments 1 through 12 in series 1. The first

series of experiments were based on a2 model and set of constraints provided by the

scheduling expert. In experiments one through eight, all forced outage (FO), critical
replacement (CR) and ship direct (SD) orders are scheduled backwards from their due date,
and the rest are scheduled forwards from their order arrival date. In experiments nine through
twelve, all orders are scheduled backwards Orders are assigned a pricirty according to their
classification. The crdering from high priority to lowest is FO, CR, SD, SO, ST. The types of
constraints included in the series are:

e Alternative operations.

e Alternative machines.

o Pre-specified due date.

o Pre-specified start date.

e ‘Work in Process.

¢ Queue ordering constraints to reduce setup time.
e Lug and length mchine physical constraints.

o Resource availability.

o Shop stability.

The following tables and histograms summarize the experiments. Note that normalized
statistics are normalized to 100 turbine blades per lot. CPU times are given for a VAX/11.780
running FRANZ LISP under Berekley UNIX,

SERIES 1 EXPERIMENTS
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Veision 1 2 3 4

Reservation Mode Eager Eager Eager Eager

Due Date Opt. Pess. Opt. Pess.

Capacity Analysis No No Yes Yes

Scheduling Direction per Lot per Lot per Lot per Lot

Number of Tardy Lots 65 72 13 13

Ave. Tardiness (only tardy lots) 130.53 158.0 114.98 121.78

Ave. Tardiness (all iots) 99.82 133.83 17.59 18.62 f
Ave. Delta Start Date 127.56 167.69 107.43 118.68 .

Ave. Lateness (Deita Due Date) 99.25 133.63 -12.93 -8.04

Ave. WIP 305.15 299.39 213.09 208.74

Ave. Processing Time 30.31 29.6 30.6 30.38 K
Ave. Percent Processing 2162 22,28 28.64 29.46 ;
Ave. Queue Time 274.84 269.78 182.49 176.37
Normalized WIP 1915 188.3 133.8 129.2 y
Normalized Proc. Time 18.2 178 18.4 183

Normalized Queue Time 173.3 170.4 1153 111.0 .
Normalized Tardy Time 80.6 88.1 70.2 742 '
Makespan 857.4 923.4 7295 737.8

Ave. Machine idle Time 754.4 822.8 625.5 634.3

Ave. % Global Machine Utilization 12.0 109 143 14.0

Ave. Local Duration : 2420 2028 344.2 338.5

Ave. Local Machine Idle Time 138.2¢ 192.2 240.2 233.2

Ave. % Local Machine Utilization 37.2 336 36.3 245

Ave. Machine Wait Time 23.2 17.7 14.0 11.4

Ave. Number Machine Reservations 288 28.3 288 288

Ave. Number States per Search 270.40 233.33 360.9 338.01

Ave. CPU Processing Time (sec) 9.73 7.83 20.92 20.31

Ave. CPU Execution Time 7.04 535 12.93 12.63

Ave. CPU GC Time 2.69 248 7.98 7.59

Ave. %CPU Execution Time 75.96 71.97 66.10 65.93

Table C-1: Series 1 Experiments 1-4 Statistics Comparison

EXPERIMENTS 1 AND 8 SUMMARY DATA
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;
*
Version . 5 8 7 8
Reservation Mode Wait Wait Wait Wait
Due Date o, Opt. Pess. Opt. Pess.
Capacity Analysis I No No Yes Yes
Scheduling Direction per Lot per Lot per Lot per Lot
Number ot Tardy Lots 71 74 14 17
Ave. Tardiness (oniy tardy lots) 210.35 183.3 117.36 103.5
Ave. Tardiness (all lots) 175.70 159.65 19.33 20.7 |
Ave. Delta Start Date 23246 221.63 148.27 149.66 K
Ave. Lateness (Deita Due Date) 175.42 159.47 1.55 3.61 i
Ave. WIP : 276.4 271.28 186.73 192.4 f
Ave Processing Time 30.39 30.56 a0.19 29.40 !
Ave. Percent Processing 28.37 29.16 32.03 28.11 §
Ave. Queue Time 246.01 240.7 156.54 162.99 !
Nermalized WIP 1705 168.2 117.4 1200 5
Normalized Proc. Time 18.2 18.4 18.1 17.7 :
Normalized Queue Time 152.2 149.8 99.2 102.3 i
Normalized Tardy Time 1288 112.8, 70.6 62.51
Makespan 755.0 750.0 583.25 588.9
Ave. Machine Idle Time 651.7 646.2 480.6 489.0
Ave. % Global Machine Utilization 137 13.9 17.6 17.0
Ave. Local Duration 4248 400.4 362.7 3359
Ave. Local Machine Idle Time 3215 296.5 260.1 2359
Ave. % Local Machine Utilization 26.0 25.1 248 273
Ave. Machine Wait Time 26.8 26.5 96 9.6
Ave. Number Machine Reservations 288 288 28.8 288
Ave. Number States per Search 289.19 282.8 419.59 388.6
Ave. CPU Processing Time (sec) 18.58 11.74 27.41 27.93
Ave. CPU Execution Tims 1471 7.34 16.83 17.33
Ave. CPU GC Time 3.87 4.40 10.59 10.54
Ave. %CPU Execution Time 82.47 68.12 66.57 65.31

Table C-2: Series 1 Experiments 5-8 Statistics Comparison

EXPERIMENTS 1 AND 8 SUMMARY DATA
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Version 9 10 1h! 12
Reservation Mode Eager Eager Wait Wait
Due Date N/A N/A N/A N/A
Capacity Analysis No Yes No Yes
Scheduling Direction Back Back Back Back
Number of Tardy Lots 0 0 0 0
Ave. Tardiness (only tardy lots) 0 0 0 0
Ave. Tardiness (all lots) 0 0 0 0
Ave, Delta Start Date 193.78 196.44 183.79 194.23
Ave. Lateness (Delta Due Date) 35.86 35.86 57.47 -58.17
Ave. WIP 103.81 101.15 92.19 81.04
Ave. Processing Time 30.28 30.13 29.99 29.79
Ave. Percent Processing 57.79 58.0 63 64.03
Ave. Queue Time 73.53 71.02 62.2 51.25
Normalized WP 63.5 61.9 56.5 49.3
Normalized Proc. Time 18.2 18.1 18.0 17.89
Normalized Queue Time 453 43.7 38.5 314
Normalized Tardy Time 0 0 0 (¥

1 ]
Makespan 669.5 669.5 668.0 687.3
Ave. Machine idle Time 566.5 5671 596.1 586.1
Ave. % Global Machine Utilization 15.4 15.3 14.6 14.7
Ave. Local Duration 383.7 384.0 4148 407.3
Ave. Local Machine Idie Time 280.7 2816 3128 306.1
Ave. % Local Machine Utilization 268 K7 184 26.2
Ave. Machine Wait Time 3.9 4.2 3.2 24
Ave. Number Machine Reservations 28.8 288 28.8 288
Ave. Number States per Search 325.96 329.85 368.59 358.5
Ave. CPU Processing Time (sac) 16.95 259 28.51 37.64
Ave. CPU Execution Time 11.07 18.14 19.85 26.83
Ave. CPU GC Time 588 7.76 8.67 10.81
Ave. %CPU Execution Time 7595 74.36 78.46 76.81

Table C-3: Series 1 Experiments 9-12 Statistics Comparison

EXPERIMENTS 1 AND 8 SUMMARY DATA




R——

MARK S. FOX

(7]
T
(]
-
>
ke
Q
~
L
o
L
)
Q
§
2

Ave. Tardiness (all lots)

[+]
=]

~
(=]

=]
(=]

(4]
[~]

&
Q

@
Q

N
(=]

10}

¢

¢
P

[\

PAGE 165

180|-
160}
140}
120}

8

80}
60}
40}
20}

ro

2 3 4 5 6 7 8 & 10

Table C-4: Number of Tardy Lots

’—O—

[

[

®

[ 4

4

3

&

12 13
VYersion

2 3 4 5 6 7 &8 § 1o

Table C-5: Average Tardiness (all lots)

EXPERIMENTS 1 AND 8 SUMMARY DATA

e 4
-

12 13
Version




PAGE 166

N N
N &
Q o

200}

180}

Ave. Delta Start Date

160}
140}

120

®

@

14

5
r

100
0

200

150

100

50

Qr‘L

5 6 7 8 9 10 17

af

Table C-6: Average Delta Start Date

12 13
Version

Ave. Lateness (Delta Due Date)

-100

12] 13
Versjon

—

Table C-7: Average Lateriess

EXPERIMEMTS 1 AND 8 SUMMARY DATA

2 4




MARK S. FOX

&
o

Ave. WIP

250t
200t
150¢

100r

W
o
e

L

¢

¢

[

PAGE 167

o
-

50
0

65.0;
64.0¢
63.0
62.0|
l 6 1 lo o

ime

rocessing T

59.0}
58.0}
§7.0}
5§6.0}

3 4 5 6 7 &8 9

Table C-8: Average WIP

3

¢
¢

®
]

4
-
3

10

17

12

13

Version

5.0
()

2

3 4 5 6 7 & 9

Table C-9: Average Processing Time

EXPERIMENTS 1 AND A SUMMARY DATA

S e ——— et e e

e R

10

11

12

13

Version




- a

OB

IDPERETPURESEI

o ok i A

3o 2

PAGE 168

~N
o

[

O
(~]

¢

)
Q

Ave. Percent Processing
a
O

@
O
¢

®
®

]
[ ]

ol 21 | . . . el . . N
o 1 2 3 4 5 6 7 8 9 10 11 12 13
Version

Table C-10: Average Percent Processing Time

@ 300,

E:

- -

o.

3250- o

3. M e
c.

®

2 200f

[

150} —°'j

100}

sol_l_. . . . . —o—i_-o}ﬁ
o

1 2 3 4 65 6 7 8§ 9 10 11 12 13
Version

Table C-11: Average Queue Time

EXPERIMENTS 1 AND 8 SUMMARY DATA




MARK S. FOX

a
3
®
N
5
£
Z

-i -4 - -~ N
N & o [+] 8
Q. O O o

8

80}

60}

40

¢

PAGE 189

1

E
= 39.0}

37.0}

36.0t

Normalized Processing

33.0})

35.0

34.0}

Table C-12: Normalized WIP

@

[ ]

®

3

5 A A " e A

A

17 12 13
Version

®

32.0
o

T 2 3 4 6 6 7 8§

9 10

Tabie C-13: Normalized Processing Time

EXPERIMENTS 1 AND 8 SUMMARY DATA

4

11 12 13
Version




PAGE 170

-
[+
o

160}

140}

120}

100}

Normalized Queue Time

80}
60}

40r

1]

{

[
®

e A I Y

-
3

20
o

140,
120}
100}

8ot

60t

Normalized Tardy Time

40}

20}

9

P

3

3 4 5 6 7 8 9 10 11 12 13
Version

Table C-14: Normalized Queue Time

?

[

A o

2

A A A
e

3 4 & 6 7 8 & 10 11 1z 13
Version

.

Table C-15: Normalized Tardy Time

EXPERIMENTS 1 AND 8 SUMMARY DATA




T o Coiia el

MARK S. FOX PAGE 171

©
O
Q

g

Global Duration
©® ©
Q
Q
P

Q@
Q
=)

A Ml AR 74008 8.5 e 3

[
¢

650}

600}

550 " a A e . a A ‘ i M SR

0 1 2 3 4 6 6 7 8 9 10 11 12 13
Version

Table C-16: Makespan

3

: &

1
f
1

Ave. Global Machine idle
a
Q
L>)

g

L A o

H

1]

o
-
L

- 0 1 2 3 4 § 6 7 & 9 10 i1 1z i3
. Version
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Appendix D
Experiments 1 and 8 Summary Data

Ten versions each of experiments 1 and 8 were generated by running each of the
experiments of the same 10 sets of test data. The test data was generated using the same
parameters specified in section 6.1. The fullowing tables and graphs summarize the recuits.

EXPERIMENTS t AND 8 SUMMARY DATA
e T
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i t Run 0 1 2 3
g Number of Tardy Lots Vi 85 82 55 72
: . va 14 2 2% 23
| ¢ Ave. Tardiness (only tardy lots) VA 13053 21914 23450 16260
va 117.36 174.36 194.07 128.56
- Ave. Tardiness (all iots) A2 99.82 159.84 151.73 137.74
v2 19.33 47.18 59.36 34.79
Ave. Deita Start Date \A) 127.56 219.87 189.42 199.64
ve 148.27 191.38 194.20 171.81
Ave. _ateress (Delta Due Date) V1 99.25 158.13 148.67 137.55
ve 1.56 39.29 §1.09 28.72
Ave. WIP vi 305.15 265.20 28257 251.76
v2 186.73 174.85 180.20 170.75
Ave. Processing Time Vi 30.31 29.76 29.81 30.04
Ve 30.19 29.91 30.18 30.60
Ave. Percent Processing Vi 21682 35.04 32.12 30.99
V2 3203 37.61 36.45 36.76
Ave. Queue Time \Al 274 .84 235.44 252.76 21.72
V2 156.54 14493 150.02 140.15
Normalized WIP \A 1915 166.0 1771 149.6
v2 1174 108.0 1115 102.4
Normalized Proc. Time Vi 18.2 18.1 180 179
va 18.2 18.2 18.2 18.2
Normalized Queue Time Vi 1733 147.9 159.1 131.7
v2 99.2 89.7 933 .
Normalized Tardy Time Vi 80.6 135.1 1446 96.1
v2 706 108.1 118.1 724
Makespan Vi1 857.41 932.13 927.13 877.08
v2 583.25 607.96 657.79 579.33
Ave. Machine idie Time Al 7544 831.0 825.8 775.0
v2 480.6 506.2 5§55.2 475.3
Ave. % Machine Utilization Vi 120 109 10.9 116
va 178 16.7 15.6 18.0
Ave. Number States per Search W1 270.40 306.91 302.19 305.368
v2 419.59 403.99 386.27 412.64
Ave. CPU) Processing Time (sec) V1 9.73 11.48 9.22 8.02
va 27.41 24.54 25.58 24.38
Ave. CPU Execution Time Vi 7.04 9.28 8.21 8.11
v2 16.83 14.49 16.30 14.07
Ave. CPU GC Time Vi 269 223 3.01 292
va 10.59 10.05 9.28 10.29
Ave. %CPU Execution Time Vi 75.96 83.68 72.75 71.88
v2 68._57 §3.92 66.18 61.49
Table D-1: Runs 0, 1, 2, 3; Statistics Comparison

EXPERIMENTS 1 AND 8 SUMMARY DATA
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Run
Number of Tardy Lots

Ave. Tardiness (only tardy lots)
Ave. Tardiness {alt lots)

Ave. Delta Start Date

Ave. Lateness (Delta Due Date)
Ave. WIP

Ave. Processing Time

Ave. Percent Processing

Ave. Queue Time

Normalized WiP

Normalized Proc. Time
Normalized Queue Time
Normalized Tardy Time
Makespan

Ave. Machine idie Time

Ave. % Machine Utilization

Ave. Number States per Search
Ave. CPU Processing Time (sec)
Ave. CPU Execution Time

Ave. CPU GC Time

Ave. %CPU Execution Time

Table D-2: Runs 4, 5, 6, 7; Statistics Comparison
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EXPERIMENTS 1 AND 8 SUMMARY DATA
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Run
Number of Tardy Lots

Ave. Tardiness {only tardy lots) '

Ave. Tardiness (all lots)

Ave. Deita Start Date

Ave. Lateness (Delta Due Date)
Ave. WiP

Ave. Processing Time

Ave. Percent Processing

Ave. Queue Time

Normalized WIP

Normalized Proc. Time
Normalized Queue Time
Normalized Tardy Time
Makespan

Ave. Machine idle Time

Ave. % Machine Utilization

Ave. Number States per Search
Ave. CPU Processing Time (sec)
Ave. CPU Execution Time

Ave. CPU GC Time

Ave. %CPU Execution Time

Table D-3: Runs 8, 9; Statistics Comparison

Vi

S5 83 S S5 85 35 8

EXPERIMENTS 1 AND 8 SUMMARY DATA
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Min f4ax Mean Std
Number of Tardy Lots V1 85.0 720 64.3 4.51
v2 14.0 260 18.4 £ 57
Ave. Tardiness (only tardy lots) v1 130.53 245 184.24 30.19
117.38 194.07 149.126 23.15
Ave. Tardiness (all lots) \Al 90.82 150.84 138.442 18.19
Ve 18.33 5§9.36 32.832 11.59
Ave. Deita Start Date Vi 127.56 219.87 189.55 4
140.66 194.2 170.27 17.17
Ave. Lateness (DeitaDue Date) V1 90.25 158.13 137.16 17.7
1.55 §1.09 13.7
Ave. WIP WA . 208.79 305.15 2874 25.54
147.31 186.8 173.25 11.63
Ave. Processing Time Vi 20.26 30.86 29.96 052
29.32 30.83 30.06 0.52
Ave. Percent Processing Vi 21.82 35.04 31.121 3.86
32.03 38.97 36.51 192
Ave. Queue Time V1 178.22 274.84 237.5 25.35
v2 117.97 156.54 143.19 11.25
Normalized WIP v 133.1 1915 165.3 15.96
96.3 17.4 107.26 6.41
Normalized Proc. Time A\ 178 18.9 18.21 0.359
180 18.7 18.26 0.24
Normalized Queue Time v 114.2 1733 147.08 16.10
776 99.2 88.97 842
Normalized Tardy Time Vi 80.6 1446 113.38 18.52
706 118.1 91.18 14.84
Makespan Vi 703.16 932.13 850.5% 62.92
527.63 657.79 500.81 38.08
Ave. Machine Idle Time vi 602.6 831.0 748.7 63.19
4279 556.2 488.61 37.47
Ave. % Machine Utilization vi 10.9 14.3 12.08 1.0
156 188 17.38 10
Ave. Number States per Search V1 270.4 343.18 309.14 20.50
v2 386.27 449.33 419.93 17.05
Ave. CPU Processing Time (sec) V1 8.02 12.63 11.08 1.2
v2 24.36 39.21 7.7 4.16
Ave. CPU Execution Time Vi 6.1 9.96 8.54 1.41
v2 14.07 27.19 18.0 3.70
Ave. CPU GC Time vi 2.1 3.01 251 0.8
Ve 8.18 12.02 9.720 1.04
Ave. %CPU Execution Time vi 71.86 839 80.82 480
v2 6149 75.8% 60.43 440

Table D-4: Final Statistics Comparison

EXPERIMENTS 1 AND 8 SUMMARY DATA
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Table D-5: Number of Tardy Lots

Average Tardiness (only tardy lots)
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Table D-8: Average Tardiness (only tardy lots)

EXPERIMENTS 1 AND 8 SUMMARY DATA
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Average Tardiness (all lots)
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Table D-7: Average Tardiness (all lots)
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EXPERIMENTS 1 AND 8 SUMMARY DATA
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Table D-11:

Average Processing Time
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Table D-12: Average Percent Processing Time

EXPERIMENTS 1 AND 8 SUMMARY DATA
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Table D-13: Average Queue Time
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Table D-14: Makespan

EX.PERIMENTS 1 AND 8 SUMMARY DATA
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Table D-15: Average Machine idle Time
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Table D-16: Average % Machine Utilization
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Table D-17: Average Number States per Search
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Table D-18: Average CPU Processing Time (sec)

EXPERIMENTS 1 AND 8 SUMMARY DATA
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Table D-19: Average CPU Execution Time
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Table D-20: Average CPU GC Time

EXPERIMENTS 1 AND 8 SUMMARY DATA
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Table 0-21: Average %CPU Execution Time

EXPERIMENTS 1 AND 8 SUMMARY DATA




